On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows Séminaire IRISA

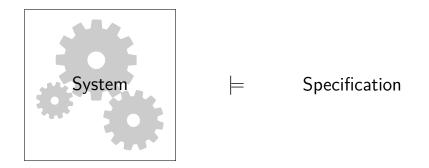
<u>Damien Busatto-Gaston</u>, Benjamin Bordais, Debraj Chakraborty Shibashis Guha and Jean-François Raskin

Université Libre de Bruxelles

June 9, 2022

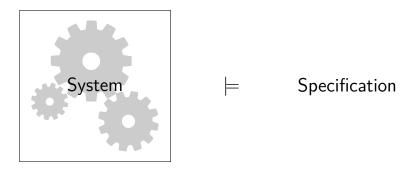
Introduction: Vérification

Ensuring system safety:



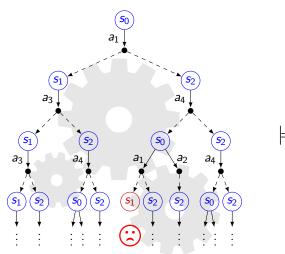
Introduction: Vérification

Ensuring system safety:

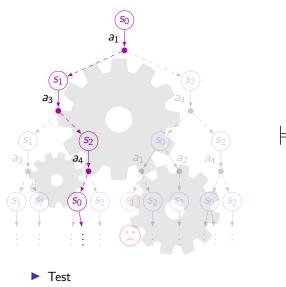


Using formal methods:

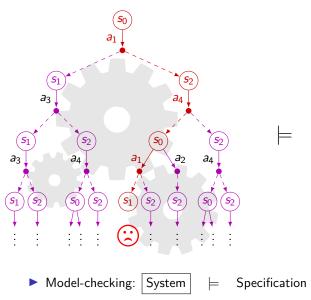
- model: finite automata, transition systems
- Specification: property in temporal logic



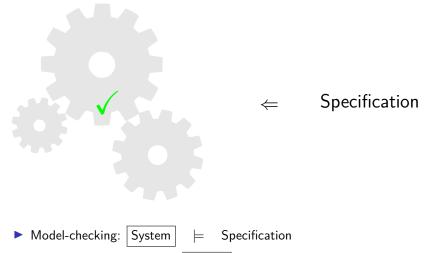
Specification



Specification



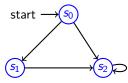
Specification



▶ Synthesis: Specification \rightarrow System

Introduction (Transition Systems)

- Formal verification: prevent erroneous behaviour of systems
- ▶ model: transition system M

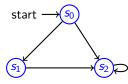


• specification: formula ϕ in some logic *e.g.* CTL

All paths reach s_2 and there is a path that avoids s_1 A F $s_2 \land$ E G $\neg s_1$

Introduction (Transition Systems)

- Formal verification: prevent erroneous behaviour of systems
- model: transition system M



• specification: formula ϕ in some logic *e.g.* CTL

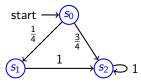
All paths reach s_2 and there is a path that avoids s_1 A F $s_2 \land$ E G $\neg s_1$

▶ early 80s, *satisfiability* problem: given ϕ , does there exists M s.t. $M \models \phi$? \sim EXPTIME-complete [Emerson and Halpern]

Late 80s, model-checking: given M and φ, does M ⊨ φ? → PTIME [Clarke and Emerson]

Introduction (Markov Chains)

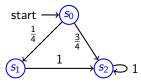
- What about stochastic systems?
- model: Markov chain (MC) M



► specification: formula ϕ in some probabilistic logic *e.g.* PCTL Instead of A and E, compare probabilities to thresholds: $\mathbb{P}[G \neg s_1] \ge \frac{1}{2}$

Introduction (Markov Chains)

- What about stochastic systems?
- model: Markov chain (MC) M

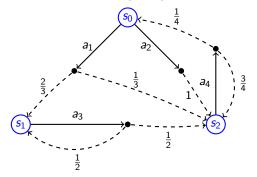


► specification: formula ϕ in some probabilistic logic *e.g.* PCTL Instead of A and E, compare probabilities to thresholds: $\mathbb{P}[G \neg s_1] \ge \frac{1}{2}$

- model-checking: given M and ϕ , does $M \models \phi$? \sim PTIME
- ► *satisfiability* problem: given ϕ , does there exists M s.t. $M \models \phi$? \rightarrow open problem

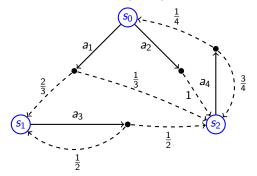
Introduction (Markov Decision Process)

- Reactive synthesis?
- ▶ model: Markov Decision Process (MDP) M



Introduction (Markov Decision Process)

- Reactive synthesis?
- ▶ model: Markov Decision Process (MDP) M



 strategy synthesis: given M and φ, does there exists a strategy σ s.t. M ⊨_σ φ? ~ Σ¹₁-hard (highly undecidable)

6/26 On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows

Introduction

- MDP | Controller strategy | Stochastic environment \sim System (MC)
- ► Strategy synthesis for a given formula in a fragment of PCTL → may be decidable
- ▶ What kind of strategy is allowed? ~> memoryless/history-dependent, deterministic/randomised

Introduction

- ▶ MDP | Controller strategy | Stochastic environment ~→ System (MC)
- ► Strategy synthesis for a given formula in a fragment of PCTL → may be decidable
- ▶ What kind of strategy is allowed? ~> memoryless/history-dependent, deterministic/randomised
- Window formulae: express a "local" property
- Global window formulae: enforce globally a "local" property

Introduction

- MDP | Controller strategy | Stochastic environment \sim System (MC)
- ► Strategy synthesis for a given formula in a fragment of PCTL → may be decidable
- ▶ What kind of strategy is allowed? ~> memoryless/history-dependent, deterministic/randomised
- Window formulae: express a "local" property
- Global window formulae: enforce globally a "local" property
- decision procedure for window properties
- global window remains undecidable
- synthesis of deterministic strategies becomes decidable!
- corolaries for PCTL satisfiability

Probabilistic CTL

Definition (PCTL syntax)

A formula of PCTL is generated by the nonterminal Φ in the following grammar:

$$\begin{split} \Phi &:= p \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \mathbb{P}[\varphi] \bowtie c \\ \varphi &:= \mathsf{X}\Phi \mid \Phi_1 \mathsf{U}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{U} \Phi_2 \end{split}$$

where p ranges over the atomic propositions in AP, ℓ ranges over \mathbb{N} , $c \in \mathbb{Q}$ and $\bowtie \in \{\leq, <, \geq, >\}$.

- ► F, G, W can be defined from U
- ▶ U^{ℓ} : ϕ_2 reached within the first ℓ steps
- ▶ ℓ encoded in unary

Probabilistic CTL with linear inequalities

Definition (L-PCTL in normal form, syntax)

A formula of *L*-PCTL is generated by the nonterminal Φ in the following grammar:

$$\Phi := p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \sum_{i=1}^n c_i \mathbb{P}[\varphi_i] \succcurlyeq c_0$$
$$\varphi := \mathsf{X}^{\ell} \Phi \mid \Phi_1 \mathsf{U}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{W}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{U} \Phi_2 \mid \Phi_1 \mathsf{W} \Phi_2$$

where *p* ranges over the atomic propositions in AP, ℓ ranges over \mathbb{N} , and $n \in \mathbb{N}_{>0}$, $(c_0, \dots, c_n) \in \mathbb{Z}^n$, $\succ \in \{\geq, >\}$ define linear inequalities.

- \blacktriangleright F, G, F^ℓ and G^ℓ as syntactic sugar
- l encoded in unary

▶ $\mathbb{P}\left[\mathsf{F}^2 a\right] \ge 0.5$ The probability of reaching *a* within 2 steps is at least 0.5.

▶ $\mathbb{P}[\mathsf{F}^2 a] \ge 0.5$ The probability of reaching *a* within 2 steps is at least 0.5.

▶ P [G P [a U⁵ b] ≥ 0.95] = 1
 With probability 1, I enforce globally P [a U⁵ b] ≥ 0.95.

▶ $\mathbb{P}[F^2a] \ge 0.5$ The probability of reaching *a* within 2 steps is at least 0.5.

▶ P [G P [a U⁵ b] ≥ 0.95] = 1
 With probability 1, I enforce globally P [a U⁵ b] ≥ 0.95.

 $\blacktriangleright \mathbb{P}\left[\mathsf{F}^{10}a\right] \geq 2\mathbb{P}\left[\mathsf{X} b\right]$

The probability of reaching a in ten steps is at least twice as big as the probability that the next state has label b.

▶ $\mathbb{P}[F^2a] \ge 0.5$ The probability of reaching *a* within 2 steps is at least 0.5.

- P [G ℙ [a U⁵ b] ≥ 0.95] = 1

 With probability 1, I enforce globally ℙ [a U⁵ b] ≥ 0.95.
- $\blacktriangleright \mathbb{P}\left[\mathsf{F}^{10}a\right] \geq 2\mathbb{P}\left[\mathsf{X} b\right]$

The probability of reaching a in ten steps is at least twice as big as the probability that the next state has label b.

$$\blacktriangleright \mathbb{P}\left[\mathsf{G}\mathbb{P}\left[\mathsf{F} a\right]=1\right]=1$$

The probability of visiting *a* infinitely often is 1.

Rolling windows

Definition

An *L*-PCTL formula Φ (in normal form) is a *window formula* if the horizon label ℓ of every path operator in Φ is finite, so that the unbounded U and W are not used.

Rolling windows

Definition

An *L*-PCTL formula Φ (in normal form) is a *window formula* if the horizon label ℓ of every path operator in Φ is finite, so that the unbounded U and W are not used.

Definition

A global window formula is a formula of the shape $A \subseteq \Phi$, with Φ a window *L*-PCTL formula. It is satisfied by a state *s* of *M* if every infinite path in Paths_{*M*}(*s*) satisfies the path formula $G \Phi$, or equivalently if every state reachable from *s* satisfies Φ .

Lemma

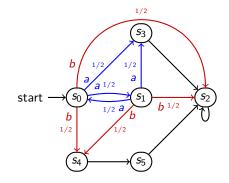
The global window formula $A G \Phi$ is satisfied on a state s of M if and only if s satisfies the L-PCTL formula $\mathbb{P}[G \Phi] = 1$.

•
$$\mathbb{P}\left[\mathsf{F}^2 a\right] \ge 0.5$$

 \rightsquigarrow window formula

- ▶ $\mathbb{P}\left[\mathsf{G} \mathbb{P}\left[a \mathsf{U}^{5} b\right] \ge 0.95\right] = 1$ \sim global window formula
- $\mathbb{P}\left[\mathsf{F}^{10}a\right] \geq 2\mathbb{P}\left[\mathsf{X} b\right]$ \sim window formula
- ▶ $\mathbb{P}[G \mathbb{P}[F a] = 1] = 1$ \sim not in our fragments

Strategy synthesis

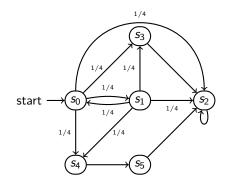


• window
$$\varphi = \mathbb{P}\left[\mathsf{F}^2 s_2\right] \geq \frac{9}{16}$$

▶ global window $AG\varphi$

▶ \rightarrow play *a* and *b* with probability $\frac{1}{2}$

Strategy synthesis



• window
$$\varphi = \mathbb{P}\left[\mathsf{F}^2 s_2\right] \geq \frac{9}{16}$$

• global window AG φ

→ play a and b with probability ¹/₂
 proba of reaching s₂ in 2 steps: ¹/₄ + ¹/₁₆ + ¹/₄ = ⁹/₁₆

 $\blacktriangleright\,$ no other strategy satisfies A G φ

Complexity of strategy synthesis

Table: the synthesis problem for

L-PCTL and MDPs

strategies:	Memoryless	History-dependent
Deterministic	NP-complete	Σ^1_1 -complete
Randomized	in EXPTIME SQRT-SUM-hard	Σ_1^1 -hard

¹if the formula is flat and non-strict

14/26 On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows

Complexity of strategy synthesis

Table: the synthesis problem for

L-PCTL and MDPs

strategies:	Memoryless	History-dependent
Deterministic	NP-complete	Σ_1^1 -complete
Randomized	in EXPTIME SQRT-SUM-hard	Σ_1^1 -hard

Theorem

Strategy synthesis for a window formula is decidable in EXPSPACE. For memoryless (resp. deterministic) startegies, PSPACE instead.

 $^{^1 \}mbox{if}$ the formula is flat and non-strict

^{14/26} On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows

Complexity of strategy synthesis

Table: the synthesis problem for global window L-PCTL and MDPs

strategies:	Memoryless	History-dependent
Deterministic	NP-complete NP-complete	Σ_1^1 -complete in 2EXPTIME EXPTIME-hard
Randomized	in EXPTIME SQRT-SUM-hard in PSPACE SQRT-SUM-hard	$\begin{array}{c} \Sigma_1^1\text{-hard} \\ \Sigma_1^1\text{-hard} \\ \text{coRE-complete}^1 \end{array}$

Theorem

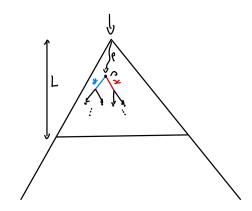
Strategy synthesis for a window formula is decidable in EXPSPACE. For memoryless (resp. deterministic) startegies, PSPACE instead.

¹if the formula is flat and non-strict

^{14/26} On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows

Window formulae

- unfold the MDP
- assign a variable x, y, \ldots to every action in this tree
- truncate at an horizon L: the window length of the formula
- ▶ a strategy is now a point in $\mathbb{R}^{\{x,y,\dots\}}$



Theory of the reals

Definition

The first-order theory of the reals (FO- \mathbb{R}) is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of real polynomials. \exists - \mathbb{R} is the existential fragment.

Proposition

Let *s* be a state of \mathcal{M} and Φ be a window *L*-PCTL formula. The set of strategies σ such that $s \models_{\sigma} \Phi$ can be represented in \exists - \mathbb{R} as a formula of exponential size.

intuition: use local consistency equations, that link the probability of a path formula on a given state to the probabilities of sub-formulae on the next states

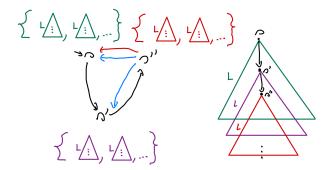
$$\blacktriangleright \mathbb{P}_{s}[\mathsf{X}^{2} a] = \sum_{s \xrightarrow{a,p} s'} p \cdot \sigma(s,a) \cdot \mathbb{P}_{s'}[\mathsf{X} a]$$

a variable for every state and sub-formula

Global window formula A G Φ

Fixed-point characterisation:

- For every state, we now have an ∃-ℝ formula describing the set of (local) strategies that satisfy Φ
- does there exists a (global) strategy so that the sub-strategies obtained at each reachable state satisfy Φ?



Global window formula A G Φ

Fixed-point characterisation:

- For every state, we now have an ∃-ℝ formula describing the set of (local) strategies that satisfy Φ
- does there exists a (global) strategy so that the sub-strategies obtained at each reachable state satisfy Φ?
- Intuition: On s, define an operator f that removes local strategies σ that are incompatible with the next state s' (no continuation of σ that satisfy Φ on s')
- take the greatest fixed point of f: a set Π_s of strategies for each s.

Proposition

Let *s* be a state, and let Φ be an *L*-PCTL window formula. Then, there exists a strategy σ so that $s \models_{\sigma} A G \Phi$ if and only if $\prod_{s} \neq \emptyset$.

Decidability results

For deterministic (history-dependent) strategies:

- the strategies in the fixed point computation are described by their first L steps
- there are finitely many that are deterministic
- $\blacktriangleright \, \rightsquigarrow$ the fixed point is reached after finitely many steps
- pick strategies successively that stay in the fixed point
- ► ~→ finite memory strategy!

Theorem

The synthesis problem for global window L-PCTL formulae is in 2EXPTIME when restricted to deterministic strategies. Moreover, it is EXPTIME-hard.

Decidability results

For deterministic (history-dependent) strategies:

- the strategies in the fixed point computation are described by their first L steps
- there are finitely many that are deterministic
- $\blacktriangleright \, \rightsquigarrow$ the fixed point is reached after finitely many steps
- pick strategies successively that stay in the fixed point
- ► ~→ finite memory strategy!

Theorem

The synthesis problem for global window L-PCTL formulae is in 2EXPTIME when restricted to deterministic strategies. Moreover, it is EXPTIME-hard.

- ▶ lower bound: simulate an alternating TM of polynomial space
- ▶ this denotes from the general problem that is highly undecidable.

Decidability results

For memoryless (randomised) strategies:

- ► the previous ∃-ℝ formulae can be greatly simplified by merging variables from the same state
- \blacktriangleright we can express the set of strategies of the fixed point directly, as a formula in $\exists -\mathbb{R}$

Theorem

The synthesis problem for global window L-PCTL formulae is in PSPACE when restricted to memoryless strategies.

Decidability results

For memoryless (randomised) strategies:

- ► the previous ∃-ℝ formulae can be greatly simplified by merging variables from the same state
- \blacktriangleright we can express the set of strategies of the fixed point directly, as a formula in $\exists -\mathbb{R}$

Theorem

The synthesis problem for global window L-PCTL formulae is in PSPACE when restricted to memoryless strategies.

- Iower bound: square root sum problem
- given $a_1 \ldots a_n$ and b, does $\sum_i \sqrt{a_i} \le b$?
- open problem of computational geometry, somewhere between NP and PSPACE

General case

If we do not restrict strategies, the fixed point characterisation does not yield decidability

- the fixed point may never be reached
- it cannot be expressed directly in the theory of the reals
- However, for a restricted class of formulae we can get semi-decidability:
- the set of points described by our formulae in the theory of the reals are compact sets

Theorem

The synthesis problem for flat, non-strict global window L-PCTL formulae is coRE-complete.

General case

If we do not restrict strategies, the fixed point characterisation does not yield decidability

- the fixed point may never be reached
- it cannot be expressed directly in the theory of the reals
- However, for a restricted class of formulae we can get semi-decidability:
- the set of points described by our formulae in the theory of the reals are compact sets

Theorem

The synthesis problem for flat, non-strict global window L-PCTL formulae is coRE-complete.

- Iower bound: halting problem for two-counter Minsky machines
- this denotes from the general problem that is highly undecidable.

Undecidability

Theorem

The synthesis problem for global window L-PCTL formulae is Σ_1^1 -hard.

- reduction from repeated reachability on two-counter Minsky machines
- we construct an MDP and a formula so that the only winning strategy accurately follows the execution of the Minsky machine
- the values of the counters are stored in the probabilities: $\frac{1}{2^{c_1}3^{c_2}}$

Undecidability

Theorem

The synthesis problem for global window L-PCTL formulae is Σ_1^1 -hard.

- reduction from repeated reachability on two-counter Minsky machines
- we construct an MDP and a formula so that the only winning strategy accurately follows the execution of the Minsky machine
- ▶ the values of the counters are stored in the probabilities: $\frac{1}{2^{c_1}3^{c_2}}$
- this denotes from the previous undecidability proof of PCTL synthesis that used deterministic strategies and used many unbounded F operators.

Need for linear inequalities in our reduction



PCTL satisfiability

Definition

PCTL *satisfiability* problem: given a formula ϕ , does there exists a Markov chain *M* s.t. $M \models \phi$?

- long standing open problem
- the Markov chain may need to be infinite or to have "weird" probabilities
- finite satisfiability also an open problem
- fixed granularity MC: restrict the probabilities to rationals $\frac{a}{N}$ of bounded denominators?

PCTL satisfiability

Definition

PCTL *satisfiability* problem: given a formula ϕ , does there exists a Markov chain *M* s.t. $M \models \phi$?

- long standing open problem
- the Markov chain may need to be infinite or to have "weird" probabilities
- finite satisfiability also an open problem
- fixed granularity MC: restrict the probabilities to rationals $\frac{a}{N}$ of bounded denominators?

Theorem

The satisfiability problem for global window L-PCTL formulae is decidable when restricted to Markov chains of fixed granularity. In this case, the formula has a model if and only if it has a finite model.

Conclusion

Contributions

- Notion of local property?
 - window PCTL formulae
- Rolling window constraint on executions?
 - global window PCTL
- How does it compare to full PCTL?
 - near the decidability threshold
 - a single unbounded until is enough for undecidability
 - deterministic strategy synthesis decidable

Satisfiability?

yields a decidable fragment of PCTL for simple Markov chains

Conclusion

Contributions

- Notion of local property?
 - window PCTL formulae
- Rolling window constraint on executions?
 - global window PCTL
- How does it compare to full PCTL?
 - near the decidability threshold
 - a single unbounded until is enough for undecidability
 - deterministic strategy synthesis decidable
- Satisfiability?
 - yields a decidable fragment of PCTL for simple Markov chains

Related topics

- Window Mean-payoff
- Prompt LTL

Thank you

26/26 On the strategy synthesis problem in MDPs: probabilistic CTL and rolling windows