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AN INTERESTING & IMPORTANT QUESTION

The Question

Why is modal logic so robustly decidable?

The Model-Theoretic Answer
Bounded-tree model property + MSOL Encoding [Vardi, 1996].

Few Further Answers
Encoding in:
• two-variable fragment of FOL (FOL[2VAR]) [Mortimer, 1975];
• guarded fragment of FOL (FOL[GF]) [Andréka et al., 1998];
• unary-negation fragment of FOL (FOL[UN]) [ten Cate and Segoufin, 2011].
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ANALYSIS OF FRAGMENTS

FOL[2VAR] is not robust, since simple extensions become undecidable.

FOL[GF] and FOL[UN] are robust and well behaved, since, as modal
logic, they enjoy good model-theoretic and algorithmic properties.

FOL[GF] FOL[UN]

Model Checking PTIME PTIME NPTIME

Satisfiability 2EXPTIME-COMPLETE 2EXPTIME-COMPLETE

Finite-Model Property X X

Craig’s Interpolation × X

Beth’s Definability X X

FOL[2VAR], FOL[GF], and FOL[UN] are orthogonal w.r.t. expressiveness.
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ANOTHER SIGNIFICANT QUESTION

The Question

Why are extensions of modal logic, as ATL? and SL[1G], decidable?

The High-Level Answer

Bounded-tree model property + MSOL Encoding [Schewe, 2008, M.,
Murano, Perelli, Vardi, 2012].

A Specific Problem

Why do they enjoy the bounded-tree model property in the first place?
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A FIRST-ORDER ENCODING

Consider the ATL? formula [[a, b, c]]¬ψ over a game with the four
agents a, b, c, and d, where ψ is an LTL formula.

It asserts that agent d has a strategy, which depends upon those chosen
by the other three ones, ensuring that the property ψ does not hold.

We can encode this property by means of the FOL sentence
∀a∀b∀c∃d¬Rψ(a, b, c, d), where Rψ is the characteristic relation for ψ,
i.e., it is true iff the strategy profile (a, b, c, d) satisfies the property.
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CLASSIC CONSTRAINT VIOLATION

The FOL sentence ϕ = ∀a∀b∀c∃d¬Rψ(a, b, c, d)...
• has more than two variables: ϕ 6∈ FOL[2VAR];
• quantifications are not guarded: ϕ 6∈ FOL[GF];
• negation is applied to more than one free variable: ϕ 6∈ FOL[UN].

We cannot derive the good algorithmic properties of ATL? and SL[1G]

from known fragments of FOL.

ϕ has quantification prefix ∀3∃, so it does not even belong to any of the
decidable prefix-vocabulary classes [Börger et al., 1997].
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OUR CONTRIBUTIONS

1 Introduction of a new way to classify FOL fragments.
2 Definition of a new model-theoretic property which allows to

generalise the concept of Herbrand model.

The fragments are based on the binding forms admitted in a sentence,
i.e., on the way the arguments of a relation can be bound to a variable.

This study allows to answer:
3 the question about the decidability of ATL? and SL[1G];
4 an open problem in database theory.
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A TALE OF LOGIC CONNECTIONS

1 The Herbrand Property of functional first-order models.

2 The decidability of Conjunctive Binding Logic satisfiability.

3 The decidability of Quantified Conjunctive Query containment.

4 A Chandra-Merlin characterisation of QCQ containment.
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A TALE OF LOGIC CONNECTIONS

1 The Herbrand Property of functional first-order models.

> A structure A enjoys the Herbrand Property if:
• two terms (semantically) equalize overA iff they (syntactically) unify.

2 The decidability of Conjunctive Binding Logic satisfiability.

3 The decidability of Quantified Conjunctive Query containment.

4 A Chandra-Merlin characterisation of QCQ containment.
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A TALE OF LOGIC CONNECTIONS

1 The Herbrand Property of functional first-order models.

2 The decidability of Conjunctive Binding Logic satisfiability.

> CBL is a fragment of First-Order Logic:
• quantifications of conjunctions of formulas on the same bindings;
• example: ∀x∃y∀z .R(x, y) ∧ (R(y, z) ∨ ¬P (y, z)).

3 The decidability of Quantified Conjunctive Query containment.

4 A Chandra-Merlin characterisation of QCQ containment.
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A TALE OF LOGIC CONNECTIONS

1 The Herbrand Property of functional first-order models.

2 The decidability of Conjunctive Binding Logic satisfiability.

3 The decidability of Quantified Conjunctive Query containment.

> QCQs are an extension of classic Conjunctive Queries:
• arbitrary quantifications of conjunctions of positive atoms;
• fragment of CBL with no disjunction or negation;
• example: ∀x∃y∀z .R(x, y) ∧ R(y, z) ∧ P (z, y, x).

4 A Chandra-Merlin characterisation of QCQ containment.
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A TALE OF LOGIC CONNECTIONS

1 The Herbrand Property of functional first-order models.

2 The decidability of Conjunctive Binding Logic satisfiability.

3 The decidability of Quantified Conjunctive Query containment.

4 A Chandra-Merlin characterisation of QCQ containment.

> Generalisation of CQ containment via homomorphism:
• ϕ1 |= ϕ2 iff there is an “homomorphism” from ϕ2 to ϕ1 that complies with

the quantification prefixes of both ϕ1 and ϕ2.
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Quantified Conjunctive Queries
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QUANTIFIED CONJUNCTIVE QUERIES

Relational fragment of first-order logic obtained by using ∀, ∃, and ∧.

Example

∀x∃y∀z.(Px ∧Rxy ∧Ryz ∧Qz)

• Relational positive Herbrand logic in mathematical logic.
• Quantified constraint satisfaction problems in constraint satisfaction.

Conjunctive queries (CQs) are QCQs without ∀.
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ENTAILMENT/CONTAINMENT OF QCQS

The Problem

Instance: A pair (ϕ1, ϕ2) of QCQs.
Question: ϕ1 |= ϕ2?

Chen, Madelaine, & Martin (LICS’08 & LMCS’15)

Question: Is entailment of QCQs decidable?
Answer: Yes it is, belongs to 3EXPTIME, but NPTIME-HARD!

Question: Do entailment and finite entailment coincide?
Answer: Open problem.

Question: Is finite entailment decidable?
Answer: Open problem.
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ENTAILMENT/CONTAINMENT OF QCQS

The Problem

Instance: A pair (ϕ1, ϕ2) of QCQs.
Question: ϕ1 |= ϕ2?

Bova & M. (LICS’17)
• Entailment and finite entailment of QCQs coincide.
• NPTIME-COMPLETE.



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Observation
Positive instances of CQ Containment have small refutations!

∃x .R(x, x) |= ∃y, z, w .R(y, z) ∧ R(z, w)

iff

R(cx, cx) ∧ ∀y, z, w .¬R(y, z) ∨ ¬R(z, w) is unsatisfiable.

R(cx, cx)

R(cx, cx) ¬R(y, z) ∨ ¬R(z, w)
y, z 7→ cx

¬R(cx, w)
w 7→ cx

⊥

From the unification y, z, w 7→ cx we can derive the homomorphism
y, z, w 7→ x from R(y, z),R(z, w) to R(x, x).
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IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations as well!

∃x∀y .R(x, y) |= ∀u,v ∃z . (R(z, u) ∧R(z, v))

iff

∀y .R(cx, y) ∧ ∀z .¬R(z, cu) ∨ ¬R(z, cv) is unsatisfiable.

R(cx, y)

R(cx, y) ¬R(z, cu) ∨ ¬R(z, cv)
y 7→ cu; z 7→ cx

¬R(cx, cv)
y 7→ cv

⊥

From the unification y 7→ cu; y 7→ cv; z 7→ cx we can derive a Skolem
homomorphism from ∀u,v ∃z . (R(z, u) ∧ R(z, v)) to ∃x∀y .R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations as well!

∃x∀y .R(x, y) |= ∀u,v ∃z . (R(z, u) ∧R(z, v))

iff

∀y .R(cx, y) ∧ ∀z .¬R(z, cu) ∨ ¬R(z, cv) is unsatisfiable.

R(cx, y)

R(cx, y) ¬R(z, cu) ∨ ¬R(z, cv)
y 7→ cu; z 7→ cx

¬R(cx, cv)
y 7→ cv

⊥

From the unification y 7→ cu; y 7→ cv; z 7→ cx we can derive a Skolem
homomorphism from ∀u,v ∃z . (R(z, u) ∧ R(z, v)) to ∃x∀y .R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations as well!

∃x∀y .R(x, y) |= ∀u,v ∃z . (R(z, u) ∧R(z, v))

iff

∀y .R(cx, y) ∧ ∀z .¬R(z, cu) ∨ ¬R(z, cv) is unsatisfiable.

R(cx, y)

R(cx, y) ¬R(z, cu) ∨ ¬R(z, cv)
y 7→ cu; z 7→ cx

¬R(cx, cv)
y 7→ cv

⊥

From the unification y 7→ cu; y 7→ cv; z 7→ cx we can derive a Skolem
homomorphism from ∀u,v ∃z . (R(z, u) ∧ R(z, v)) to ∃x∀y .R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations as well!

∃x∀y .R(x, y) |= ∀u,v ∃z . (R(z, u) ∧R(z, v))

iff

∀y .R(cx, y) ∧ ∀z .¬R(z, cu) ∨ ¬R(z, cv) is unsatisfiable.

R(cx, y)

R(cx, y) ¬R(z, cu) ∨ ¬R(z, cv)
y 7→ cu; z 7→ cx

¬R(cx, cv)
y 7→ cv

⊥

From the unification y 7→ cu; y 7→ cv; z 7→ cx we can derive a Skolem
homomorphism from ∀u,v ∃z . (R(z, u) ∧ R(z, v)) to ∃x∀y .R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations too!

∀y∃x .R(x, y) |= ∀u∃z,v . (R(z, u) ∧R(v, z))

iff

∀y .R(fx(y), y) ∧ ∀z,v .¬R(z, cu) ∨ ¬R(v, z) is unsatisfiable.

R(fx(y), y)

R(fx(y), y) ¬R(z, cu) ∨ ¬R(v, z)
y 7→ cu; z 7→ fx(cu)

¬R(v, fx(cu))
y 7→ fx(cu), v 7→ fx(fx(cu))

⊥

The unification y 7→ cu; y, z 7→ fx(cu); v 7→ fx(fx(cu)) induces a
Skolem homomorphism from ∀u∃z,v.(R(z, u)∧R(v, z)) to ∀y∃x.R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations too!

∀y∃x .R(x, y) |= ∀u∃z,v . (R(z, u) ∧R(v, z))

iff

∀y .R(fx(y), y) ∧ ∀z,v .¬R(z, cu) ∨ ¬R(v, z) is unsatisfiable.

R(fx(y), y)

R(fx(y), y) ¬R(z, cu) ∨ ¬R(v, z)
y 7→ cu; z 7→ fx(cu)

¬R(v, fx(cu))
y 7→ fx(cu), v 7→ fx(fx(cu))

⊥

The unification y 7→ cu; y, z 7→ fx(cu); v 7→ fx(fx(cu)) induces a
Skolem homomorphism from ∀u∃z,v.(R(z, u)∧R(v, z)) to ∀y∃x.R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations too!

∀y∃x .R(x, y) |= ∀u∃z,v . (R(z, u) ∧R(v, z))

iff

∀y .R(fx(y), y) ∧ ∀z,v .¬R(z, cu) ∨ ¬R(v, z) is unsatisfiable.

R(fx(y), y)

R(fx(y), y) ¬R(z, cu) ∨ ¬R(v, z)
y 7→ cu; z 7→ fx(cu)

¬R(v, fx(cu))
y 7→ fx(cu), v 7→ fx(fx(cu))

⊥

The unification y 7→ cu; y, z 7→ fx(cu); v 7→ fx(fx(cu)) induces a
Skolem homomorphism from ∀u∃z,v.(R(z, u)∧R(v, z)) to ∀y∃x.R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Result
Positive instances of QCQ Containment have small refutations too!

∀y∃x .R(x, y) |= ∀u∃z,v . (R(z, u) ∧R(v, z))

iff

∀y .R(fx(y), y) ∧ ∀z,v .¬R(z, cu) ∨ ¬R(v, z) is unsatisfiable.

R(fx(y), y)

R(fx(y), y) ¬R(z, cu) ∨ ¬R(v, z)
y 7→ cu; z 7→ fx(cu)

¬R(v, fx(cu))
y 7→ fx(cu), v 7→ fx(fx(cu))

⊥

The unification y 7→ cu; y, z 7→ fx(cu); v 7→ fx(fx(cu)) induces a
Skolem homomorphism from ∀u∃z,v.(R(z, u)∧R(v, z)) to ∀y∃x.R(x, y).



Preface Quantified Conjunctive Queries Conjunctive Binding Logic Conclusion

IDEA BEHIND THE NPTIME UPPER BOUND

Definition
A Skolem homomorphism from ϕ2 = ℘2χ2 to ϕ1 = ℘1χ1 is a substitution
σ of variables of ℘2 by terms on the vocabulary of sk℘(χ1) such that:

1 universal variables in ℘2 maps injectively via σ;
2 every existential variable x in ℘2 maps to the term σ(x) not

containing images of universal variables after x in ℘2;
3 every atom R(x, . . . , xk) in χ2 has an atom R(t, . . . , tk) in

sk℘
(χ1) such that R(σ(x), . . . , σ(xk)) and R(t, . . . , tk) unify.

Chandra-Merlin (STOC’77) - Theorem for CQ

ϕ1 |= ϕ2 iff there is an homomorphism from ϕ2 to ϕ1.

Bova & M. (LICS’17) - Theorem for QCQ

ϕ1 |= ϕ2 iff there is a Skolem homomorphism from ϕ2 to ϕ1.
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FINITE ENTAILMENT/CONTAINMENT OF QCQS

ϕ1 |=fin ϕ2 iff ϕ2 is satisfied on all finite models of ϕ1.

Finite entailment is the relevant notion in CS applications (e.g., in
query optimisation the database is finite).

Proof Approach

We proved the collapse of entailment ϕ1 |= ϕ2 and finite entailment
ϕ1 |=fin ϕ2 of QCQs via a domain-preserving reduction to the satisfiability
check of a CBL sentence ψ.

FOL-provers solve (in practice) the finite QCQ-entailment problem!
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FROM ENTAILMENT TO FINITE ENTAILMENT

Proof Approach

We proved the collapse of entailment ϕ1 |= ϕ2 and finite entailment
ϕ1 |=fin ϕ2 of QCQs via a domain-preserving reduction to the satisfiability
check of a CBL sentence ψ.

Observations
1 The results exploits the finite-model property of CBL.
2 It is more involved than the classic check for the satisfiability of
ϕ1 ∧ ¬ϕ2, as the latter belongs to an undecidable fragment of FOL.

• ψ unsat ⇒ ϕ1 |= ϕ2 ⇒ ϕ1 |=fin ϕ2

• ψ sat ⇒ A |=fin ψ ⇒ A |=fin ϕ1 ∧ ¬ϕ2 ⇒ ϕ1 6|=fin ϕ2 ⇒ ϕ1 6|= ϕ2
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CONJUNCTIVE BINDING LOGIC

CBL Syntax

Positive Boolean combinations of sentences ℘(ψ1 ∧ ψ2 ∧ . . . ∧ ψk):
• ℘ is an arbitrary quantification prefix;
• ψi is a Boolean combinations of atoms over the same binding

(i.e., same association of variables with positions in a relation).

• ∀x∃y∀z .R(x, y) ∧ (R(y, z) ∨ ¬P (y, z)) X
• ∀x∃y∀z .R(x, y) ∧ (R(x, y) ∨ ¬P (y, z)) ×

CBL is incomparable with other FOL fragments (FOL[GF], FOL[UN]).
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MAIN PROPERTIES OF CBL

Results for CBL
1 Finite-model property.
2 Decidable satisfiability (ΣP

3 -COMPLETE).

Satisfiability Criterion

ϕ ∈ CBL is sat iff there is an implicant where all atoms over the same
relation and unifying bindings agree on the polarity.

ϕ=∃x∀y .R(x, y)∧¬R(y, x) is sat iff ∀y .R(cx, y)∧¬R(y, cx) is sat:
• (cx, y) and (y, cx) unify ⇒ ϕ is unsat.

ϕ=∀y∃x .R(x, y)∧¬R(y, x) is sat iff ∀y .R(fx(y), y)∧¬R(y, fx(y)) is sat:
• (fx(y), y) and (y, fx(y)) do not unify ⇒ ϕ is sat.
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HERBRAND PROPERTY (I)

Two terms s(x, . . . , xn), t(x, . . . , xn) are equalizable on a structure A if

A |= ∃x, . . . , xn . s(x, . . . , xn) = t(x, . . . , xn)

Herbrand Property of A: two terms equalize over A iff they unify.
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HERBRAND PROPERTY (II)

Herbrand Property of A: two terms equalize over A iff they unify.

The Satisfiability Criterion for CBL is based on the Herbrand Property:
• two unifying bindings do equalize (i.e., may assume the same

value) on all models;
• there is a (finite) model on which all non-unifying bindings do not

equalize.

• Structures satisfying HP are called Quasi-Herbrand Models.
• Standard Herbrand Models satisfy HP.
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Conclusion
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SUMMING UP

1 Introduction and study of a new decidable fragment of FOL.
2 Identification of a model-theoretic property, namely the Herbrand

Property, useful to prove the decidability of fragments of first
order logic with functions.

3 Solution of the open problem about QCQ (finite) containment.
4 Discover of another reason why ATL? and SL[1G] are decidable.



Thank you!
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