Herbrand Property,
 Finite Quasi-Herbrand Models, and a Chandra-Merlin Theorem for Quantified Conjunctive Queries

Fabio Mogavero
(joint work with Simone Bova)

Università degli Studi di Napoli Federico II

68NQRT Seminar - IRISA/INRIA
December 9, 2021

An Interesting \& Important Question

The Question

Why is modal logic so robustly decidable?

The Model-Theoretic Answer

Bounded-tree model property + MSOL Encoding [Vardi, 1996].

Few Further Answers

Encoding in:

- two-variable fragment of FOL (FOL[2VAR]) [Mortimer, 1975];
- guarded fragment of FOL (FOL[GF]) [Andréka et al., 1998];
- unary-negation fragment of FOL (FOL[UN]) [ten Cate and Segoufin, 2011].

Analysis of Fragments

FOL[2var] is not robust, since simple extensions become undecidable.

FOL[GF] and FOL[UN] are robust and well behaved, since, as modal logic, they enjoy good model-theoretic and algorithmic properties.

	FOL[GF]	FOL[UN]
Model Checking	PTimE	PTimE NPTIME
Satisfiability	2ExPTime-COMPLETE	2ExPTime-COMPLETE
Finite-Model Property	\checkmark	\checkmark
Craig's Interpolation	\times	\checkmark
Beth's Definability	\checkmark	\checkmark

FOL[2var], $\mathrm{FOL}[\mathrm{GF}]$, and FOL[UN] are orthogonal w.r.t. expressiveness.

Another Significant Question

The Question

Why are extensions of modal logic, as ATL* and SL[1G], decidable?

The High-Level Answer

Bounded-tree model property + MSOL Encoding [Schewe, 2008, M., Murano, Perelli, Vardi, 2012].

A Specific Problem

Why do they enjoy the bounded-tree model property in the first place?

A First-Order Encoding

Consider the ATL ${ }^{\star}$ formula $\llbracket a, b, c \rrbracket \neg \psi$ over a game with the four agents a, b, c, and d, where ψ is an LTL formula.

It asserts that agent d has a strategy, which depends upon those chosen by the other three ones, ensuring that the property ψ does not hold.

We can encode this property by means of the FOL sentence $\forall a \forall b \forall c \exists d \neg R_{\psi}(a, b, c, d)$, where R_{ψ} is the characteristic relation for ψ, i.e., it is true iff the strategy profile (a, b, c, d) satisfies the property.

Classic Constraint Violation

The FOL sentence $\varphi=\forall a \forall b \forall c \exists d \neg R_{\psi}(a, b, c, d) \ldots$

- has more than two variables: $\varphi \notin \mathrm{FOL}[2 \mathrm{VAR}]$;
- quantifications are not guarded: $\varphi \notin \mathrm{FOL}[\mathrm{GF}] ;$
- negation is applied to more than one free variable: $\varphi \notin \mathrm{FOL}[\mathrm{UN}]$.

We cannot derive the good algorithmic properties of ATL* and SL[1G] from known fragments of FOL.
φ has quantification prefix $\forall^{3} \exists$, so it does not even belong to any of the decidable prefix-vocabulary classes [Börger et al., 1997].

Our Contributions

(1) Introduction of a new way to classify FOL fragments.
(2) Definition of a new model-theoretic property which allows to generalise the concept of Herbrand model.

The fragments are based on the binding forms admitted in a sentence, i.e., on the way the arguments of a relation can be bound to a variable.

This study allows to answer:
(3) the question about the decidability of ATL* and SL[1G];
(4) an open problem in database theory.

A Tale of Logic Connections

(1) The Herbrand Property of functional first-order models.
(2) The decidability of Conjunctive Binding Logic satisfiability.
(3) The decidability of Quantified Conjunctive Query containment.
(4) A Chandra-Merlin characterisation of QCQ containment.

A Tale of Logic Connections

(1) The Herbrand Property of functional first-order models.

* A structure \mathcal{A} enjoys the Herbrand Property if:
- two terms (semantically) equalize over \mathcal{A} iff they (syntactically) unify.
(2) The decidability of Conjunctive Binding Logic satisfiability.
(3) The decidability of Quantified Conjunctive Query containment.
(4) A Chandra-Merlin characterisation of QCQ containment.

A Tale of Logic Connections

(1) The Herbrand Property of functional first-order models.
(2) The decidability of Conjunctive Binding Logic satisfiability.

* CBL is a fragment of First-Order Logic:
- quantifications of conjunctions of formulas on the same bindings;
- example: $\forall x \exists y \forall z \cdot R(x, y) \wedge(R(y, z) \vee \neg P(y, z))$.
(3) The decidability of Quantified Conjunctive Query containment.
(1) A Chandra-Mertin characterisation of QCQ containment.

A Tale of Logic Connections

(1) The Herbrand Property of functional first-order models.
(2) The decidability of Conjunctive Binding Logic satisfiability.
(3) The decidability of Quantified Conjunctive Query containment.

* QCQs are an extension of classic Conjunctive Queries:
- arbitrary quantifications of conjunctions of positive atoms;
- fragment of CBL with no disjunction or negation;
- example: $\forall x \exists y \forall z \cdot R(x, y) \wedge R(y, z) \wedge P(z, y, x)$.

A Tale of Logic Connections

(1) The Herbrand Property of functional first-order models.
(2) The decidability of Conjunctive Binding Logic satisfiability.
(3) The decidability of Quantified Conjunctive Query containment.
(4) A Chandra-Merlin characterisation of QCQ containment.

* Generalisation of CQ containment via homomorphism:
- $\varphi_{1} \models \varphi_{2}$ iff there is an "homomorphism" from φ_{2} to φ_{1} that complies with the quantification prefixes of both φ_{1} and φ_{2}.

Quantified Conjunctive Queries

Quantified Conjunctive Queries

Relational fragment of first-order logic obtained by using \forall, \exists, and \wedge.

> Example
> $\forall x \exists y \forall z .(P x \wedge R x y \wedge R y z \wedge Q z)$

- Relational positive Herbrand logic in mathematical logic.
- Quantified constraint satisfaction problems in constraint satisfaction.

Conjunctive queries (CQs) are QCQs without \forall.

Entailment / Containment of QCQs

The Problem

Instance: A pair $\left(\varphi_{1}, \varphi_{2}\right)$ of QCQs.
Question: $\varphi_{1} \models \varphi_{2}$?

Chen, Madelaine, \& Martin (LICS'08 \& LMCS'15)
Question: Is entailment of QCQs decidable?
Answer: Yes it is, belongs to 3ExpTime, but NPTime-Hard!

Entailment / Containment of QCQs

The Problem

Instance: A pair $\left(\varphi_{1}, \varphi_{2}\right)$ of QCQs.
Question: $\varphi_{1} \models \varphi_{2}$?

Chen, Madelaine, \& Martin (LICS'08 \& LMCS'15)
Question: Is entailment of QCQs decidable?
Answer: Yes it is, belongs to 3ExpTime, but NPTime-HARD!
Question: Do entailment and finite entailment coincide?
Answer: Open problem.
Question: Is finite entailment decidable?
Answer: Open problem.

Entailment / Containment of QCQs

The Problem

Instance: A pair $\left(\varphi_{1}, \varphi_{2}\right)$ of QCQs.
Question: $\varphi_{1} \models \varphi_{2}$?

Chen, Madelaine, \& Martin (LICS'08 \& LMCS'15)
Question: Is entailment of QCQs decidable?
Answer: Yes it is, belongs to 3ExpTime, but NPTime-HARD!
Question: Do entailment and finite entailment coincide?
Answer: Open problem.
Question: Is finite entailment decidable?
Answer: Open problem.

Entailment / Containment of QCQs

The Problem

Instance: A pair $\left(\varphi_{1}, \varphi_{2}\right)$ of QCQs.
Question: $\varphi_{1} \models \varphi_{2}$?

Bova \& M. (LICS'17)

- Entailment and finite entailment of QCQs coincide.
- NPTime-complete.

Idea Behind the NPTime Upper Bound

Observation
Positive instances of CQ Containment have small refutations!

Idea Behind the NPTime Upper Bound

Observation

Positive instances of CQ Containment have small refutations!

$$
\exists x \cdot R(x, x) \models \exists y, z, w \cdot R(y, z) \wedge R(z, w)
$$

$$
R\left(c_{x}, c_{x}\right) \wedge \forall y, z, w . \neg R(y, z) \vee \neg R(z, w) \text { is unsatisfiable. }
$$

Idea Behind the NPTime Upper Bound

Observation

Positive instances of CQ Containment have small refutations!

$$
\exists x \cdot R(x, x) \models \exists y, z, w \cdot R(y, z) \wedge R(z, w)
$$

iff
$R\left(c_{x}, c_{x}\right) \wedge \forall y, z, w . \neg R(y, z) \vee \neg R(z, w)$ is unsatisfiable.

From the unification $y, z, w \mapsto c_{x}$ we can derive the homomorphism $y, z, w \mapsto x$ from $R(y, z), R(z, w)$ to $R(x, x)$.

Idea Behind the NPTime Upper Bound

Observation

Positive instances of CQ Containment have small refutations!

$$
\exists x \cdot R(x, x) \models \exists y, z, w \cdot R(y, z) \wedge R(z, w)
$$

iff

$$
R\left(c_{x}, c_{x}\right) \wedge \forall y, z, w . \neg R(y, z) \vee \neg R(z, w) \text { is unsatisfiable. }
$$

From the unification $y, z, w \mapsto c_{x}$ we can derive the homomorphism $y, z, w \mapsto x$ from $R(y, z), R(z, w)$ to $R(x, x)$.

Idea Behind the NPTime Upper Bound

Result
 Positive instances of QCQ Containment have small refutations as well!

Idea Behind the NPTime Upper Bound

Result

Positive instances of QCQ Containment have small refutations as well!

$$
\exists x \forall y \cdot R(x, y) \vDash \forall u, v \exists z \cdot(R(z, u) \wedge R(z, v))
$$

iff
$\forall y . R\left(c_{x}, y\right) \wedge \forall z . \neg R\left(z, c_{u}\right) \vee \neg R\left(z, c_{v}\right)$ is unsatisfiable.

Idea Behind the NPTime Upper Bound

Result

Positive instances of QCQ Containment have small refutations as well!

$$
\exists x \forall y \cdot R(x, y) \vDash \forall u, v \exists z \cdot(R(z, u) \wedge R(z, v))
$$

iff
$\forall y . R\left(c_{x}, y\right) \wedge \forall z . \neg R\left(z, c_{u}\right) \vee \neg R\left(z, c_{v}\right)$ is unsatisfiable.

From the unification ?

Idea Behind the NPTime Upper Bound

Result

Positive instances of QCQ Containment have small refutations as well!

$$
\exists x \forall y \cdot R(x, y) \vDash \forall u, v \exists z \cdot(R(z, u) \wedge R(z, v))
$$

iff
$\forall y . R\left(c_{x}, y\right) \wedge \forall z . \neg R\left(z, c_{u}\right) \vee \neg R\left(z, c_{v}\right)$ is unsatisfiable.

From the unification $y_{1} \mapsto c_{u} ; y_{2} \mapsto c_{v} ; z \mapsto c_{x}$ we can derive a Skolem homomorphism from $\forall u, v \exists z .(R(z, u) \wedge R(z, v))$ to $\exists x \forall y . R(x, y)$.

Idea Behind the NPTime Upper Bound

Result
 Positive instances of QCQ Containment have small refutations too!

Idea Behind the NPTime Upper Bound

Result
Positive instances of QCQ Containment have small refutations too!

$$
\forall y \exists x \cdot R(x, y) \vDash \forall u \exists z, v \cdot(R(z, u) \wedge R(v, z))
$$

$\forall y \cdot R\left(f_{x}(y), y\right) \wedge \forall z, v . \neg R\left(z, c_{u}\right) \vee \neg R(v, z)$ is unsatisfiable.

Idea Behind the NPTime Upper Bound

Result

Positive instances of QCQ Containment have small refutations too!

$$
\forall y \exists x \cdot R(x, y) \vDash \forall u \exists z, v \cdot(R(z, u) \wedge R(v, z))
$$

$\forall y \cdot R\left(f_{x}(y), y\right) \wedge \forall z, v \cdot \neg R\left(z, c_{u}\right) \vee \neg R(v, z)$ is unsatisfiable.

$$
\frac{\left.\left.R\left(f_{x}\left(y_{2}\right), y_{2}\right) \frac{R\left(f_{x}\left(y_{1}\right), y_{1}\right) \quad \neg R\left(z, c_{u}\right) \vee \neg R(v, z)}{\neg R\left(v, f_{x}\left(c_{u}\right)\right)} y_{y_{1} \mapsto c_{u} ; z \mapsto f_{x}\left(c_{u}\right), v \mapsto f_{x}\left(c_{u}\right)}+f_{u}\right)\right)}{\perp}
$$

The unification y
Skolem homomorphism from

Idea Behind the NPTime Upper Bound

Result

Positive instances of QCQ Containment have small refutations too!

$$
\forall y \exists x \cdot R(x, y) \vDash \forall u \exists z, v \cdot(R(z, u) \wedge R(v, z))
$$

iff
$\forall y \cdot R\left(f_{x}(y), y\right) \wedge \forall z, v . \neg R\left(z, c_{u}\right) \vee \neg R(v, z)$ is unsatisfiable.

$$
\frac{R\left(f_{x}\left(y_{2}\right), y_{2}\right) \frac{R\left(f_{x}\left(y_{1}\right), y_{1}\right) \quad \neg R\left(z, c_{u}\right) \vee \neg R(v, z)}{\neg R\left(v, f_{x}\left(c_{u}\right)\right)} y_{y_{1} \mapsto f_{x}\left(c_{u}\right), v \mapsto c_{u} ; z \mapsto f_{x}\left(f_{x}\left(c_{u}\right)\right)}^{\perp}}{}
$$

The unification $y_{1} \mapsto c_{u} ; y_{2}, z \mapsto f_{x}\left(c_{u}\right) ; v \mapsto f_{x}\left(f_{x}\left(c_{u}\right)\right)$ induces a Skolem homomorphism from $\forall u \exists z, v .(R(z, u) \wedge R(v, z))$ to $\forall y \exists x \cdot R(x, y)$.

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in ς_{2};every atom $R\left(x_{1}, \ldots, x_{k}\right)$ in χ_{2} has an atom $R\left(t_{1}\right.$
such that $R\left(\sigma\left(x_{1}\right) \ldots, \sigma\left(x_{k}\right)\right)$ and R
unify

Chandra-Merlin (STOC'77) - Theorem for CQ

$$
\text { iff there is an homomorphism from } \varphi_{2} \text { to }
$$

Bova \& M. (LICS'17) - Theorem for QCQ

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in \wp_{2}; (3) every atom $R\left(x_{1}, \ldots, x_{k}\right)$ in χ_{2} has an atom $R\left(t_{1}\right.$, and unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

$$
\text { iff there is an homomorphism from } \varphi_{2} \text { to }
$$

\square

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in \wp_{2};

\square
iff there is an homomorphism from

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in \wp_{2};
(3) every atom $R\left(x_{1}, \ldots, x_{k}\right)$ in χ_{2} has an atom $R\left(t_{1}, \ldots, t_{k}\right)$ in sk $_{\wp_{1}}\left(\chi_{1}\right)$ such that $R\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right)$ and $R\left(t_{1}, \ldots, t_{k}\right)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

$$
\text { iff there is an homomorphism from } \varphi_{2} \text { to }
$$

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in \wp_{2};
(3) every atom $R\left(x_{1}, \ldots, x_{k}\right)$ in χ_{2} has an atom $R\left(t_{1}, \ldots, t_{k}\right)$ in sk $_{\wp_{1}}\left(\chi_{1}\right)$ such that $R\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right)$ and $R\left(t_{1}, \ldots, t_{k}\right)$ unify.

Chandra-Merlin (STOC 77$)$ - Theorem for CQ

$\varphi_{1} \models \varphi_{2}$ iff there is an homomorphism from φ_{2} to φ_{1}.

Idea Behind the NPTime Upper Bound

Definition

A Skolem homomorphism from $\varphi_{2}=\wp_{2} \chi_{2}$ to $\varphi_{1}=\wp_{1} \chi_{1}$ is a substitution σ of variables of \wp_{2} by terms on the vocabulary of $\mathrm{sk}_{\wp_{1}}\left(\chi_{1}\right)$ such that:
(1) universal variables in \wp_{2} maps injectively via σ;
(2) every existential variable x in \wp_{2} maps to the term $\sigma(x)$ not containing images of universal variables after x in \wp_{2};
(3) every atom $R\left(x_{1}, \ldots, x_{k}\right)$ in χ_{2} has an atom $R\left(t_{1}, \ldots, t_{k}\right)$ in sk $_{\wp_{1}}\left(\chi_{1}\right)$ such that $R\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right)$ and $R\left(t_{1}, \ldots, t_{k}\right)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

$\varphi_{1} \models \varphi_{2}$ iff there is an homomorphism from φ_{2} to φ_{1}.

Bova \& M. (LICS'17) - Theorem for QCQ
$\varphi_{1} \models \varphi_{2}$ iff there is a Skolem homomorphism from φ_{2} to φ_{1}.

Finite Entailment / Containment of QCQs

$\varphi_{1} \models_{\text {fin }} \varphi_{2}$ iff φ_{2} is satisfied on all finite models of φ_{1}.
Finite entailment is the relevant notion in CS applications (e.g., in query optimisation the database is finite).

Proof Approach

We proved the collapse of entailment $\varphi_{1} \models \varphi_{2}$ and finite entailment $\varphi_{1} \models_{\text {fin }} \varphi_{2}$ of QCQs via a domain-preserving reduction to the satisfiability check of a CBL sentence ψ.

FOL-provers solve (in practice) the finite QCQ-entailment problem!

From Entailment to Finite Entailment

Proof Approach

We proved the collapse of entailment $\varphi_{1} \models \varphi_{2}$ and finite entailment $\varphi_{1} \models_{\text {fin }} \varphi_{2}$ of QCQs via a domain-preserving reduction to the satisfiability check of a CBL sentence ψ.

Observations

(1) The results exploits the finite-model property of CBL.
2. It is more involved than the classic check for the satisfiability of as the latter belongs to an undecidable fragment of FOL.

- ψ unsat

- m/. sat

From Entailment to Finite Entailment

Proof Approach

We proved the collapse of entailment $\varphi_{1} \models \varphi_{2}$ and finite entailment $\varphi_{1} \models_{\text {fin }} \varphi_{2}$ of QCQs via a domain-preserving reduction to the satisfiability check of a CBL sentence ψ.

Observations

(1) The results exploits the finite-model property of CBL.
(2) It is more involved than the classic check for the satisfiability of $\varphi_{1} \wedge \neg \varphi_{2}$, as the latter belongs to an undecidable fragment of FOL.

- ψ unsat

- .n. sat

From Entailment to Finite Entailment

Proof Approach

We proved the collapse of entailment $\varphi_{1} \models \varphi_{2}$ and finite entailment $\varphi_{1} \models_{\text {fin }} \varphi_{2}$ of QCQs via a domain-preserving reduction to the satisfiability check of a CBL sentence ψ.

Observations

(1) The results exploits the finite-model property of CBL.
(2) It is more involved than the classic check for the satisfiability of $\varphi_{1} \wedge \neg \varphi_{2}$, as the latter belongs to an undecidable fragment of FOL.

- ψ unsat $\Rightarrow \varphi_{1} \models \varphi_{2} \Rightarrow \varphi_{1} \models_{\text {fin }} \varphi_{2}$
- ψ sat $\Rightarrow \mathcal{A} \models_{\text {fin }} \psi \Rightarrow \mathcal{A} \models_{\text {fin }} \varphi_{1} \wedge \neg \varphi_{2} \Rightarrow \varphi_{1} \not \vDash_{f i n} \varphi_{2} \Rightarrow \varphi_{1} \not \models \varphi_{2}$

Conjunctive Binding Logic

Conjunctive Binding Logic

CBL Syntax

Positive Boolean combinations of sentences $\wp\left(\psi_{1} \wedge \psi_{2} \wedge \ldots \wedge \psi_{k}\right)$:

- \wp is an arbitrary quantification prefix;
- ψ_{i} is a Boolean combinations of atoms over the same binding (i.e., same association of variables with positions in a relation).
- $\forall x \exists y \forall z . R(x, y) \wedge(R(y, z) \vee \neg P(y, z)) \checkmark$
- $\forall x \exists y \forall z . R(x, y) \wedge(R(x, y) \vee \neg P(y, z)) \times$

CBL is incomparable with other FOL fragments (FOL[GF], FOL[UN]).

Main Properties of CBL

Results for CBL

(1) Finite-model property.
(2) Decidable satisfiability (Σ_{3}^{P}-COMPLETE).

Satisfiability Criterion

$\varphi \in$ CBL is sat iff there is an implicant where all atoms over the same relation and unifying bindings agree on the polarity.

$$
\begin{aligned}
\varphi & =\exists x \forall y \cdot R(x, y) \wedge \neg R(y, x) \text { is sat iff } \forall y \cdot R\left(c_{x}, y\right) \wedge \neg R\left(y, c_{x}\right) \text { is sat: } \\
& \text { - }\left(c_{x}, y\right) \text { and }\left(y, c_{x}\right) \text { unify } \Rightarrow \varphi \text { is unsat. } \\
\varphi= & \forall y \exists x \cdot R(x, y) \wedge \neg R(y, x) \text { is sat iff } \forall y \cdot R\left(f_{x}(y), y\right) \wedge \neg R\left(y, f_{x}(y)\right) \text { is sat: } \\
& \text { - }\left(f_{x}(y), y\right) \text { and }\left(y, f_{x}(y)\right) \text { do not unify } \Rightarrow \varphi \text { is sat. }
\end{aligned}
$$

Herbrand Property (I)

Two terms $s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right)$ are equalizable on a structure \mathcal{A} if

$$
\mathcal{A} \models \exists x_{1}, \ldots, x_{n} . s\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{1}, \ldots, x_{n}\right)
$$

Herbrand Property of \mathcal{A} : two terms equalize over \mathcal{A} iff they unify.

Herbrand Property (II)

Herbrand Property of \mathcal{A} : two terms equalize over \mathcal{A} iff they unify.

The Satisfiability Criterion for CBL is based on the Herbrand Property:

- two unifying bindings do equalize (i.e., may assume the same value) on all models;
- there is a (finite) model on which all non-unifying bindings do not equalize.
- Structures satisfying HP are called Quasi-Herbrand Models.
- Standard Herbrand Models satisfy HP.

Conclusion

SUMMING UP

(1) Introduction and study of a new decidable fragment of FOL.
(2) Identification of a model-theoretic property, namely the Herbrand Property, useful to prove the decidability of fragments of first order logic with functions.
(3) Solution of the open problem about QCQ (finite) containment.
(4) Discover of another reason why ATL^{\star} and $\mathrm{SL}[1 \mathrm{G}]$ are decidable.

Thank you!

References I

显
Andréka，H．，van Benthem，J．，and Németi，I．（1998）．
Modal Languages And Bounded Fragments Of Predicate Logic．
JPL，27（3）：217－274．
囯 Börger，E．，Grädel，E．，and Gurevich，Y．（1997）．
The Classical Decision Problem．
Perspectives in Mathematical Logic．Springer．
R Mogavero，F．，Murano，A．，Perelli，G．，and Vardi，M．（2012）．
What Makes ATL＊Decidable？A Decidable Fragment of Strategy Logic．
In CONCUR＇12，LNCS 7454，pages 193－208．Springer．
國 Mortimer，M．（1975）．
On Languages with Two Variables．
MLQ，21（1）：135－140．
击 Schewe，S．（2008）．
ATL＊Satisfiability is 2ExpTime－Complete．
In ICALP＇08，LNCS 5126，pages 373－385．Springer．

References II

目 ten Cate, B. and Segoufin, L. (2011).
Unary Negation.
In STACS'11, LIPIcs 9, pages 344-355. Leibniz-Zentrum fuer Informatik.
國 Vardi, M. (1996).
Why is Modal Logic So Robustly Decidable?
In DCFM'96, pages 149-184. AMS.

