Herbrand Property, Finite Quasi-Herbrand Models, and a Chandra-Merlin Theorem for Quantified Conjunctive Queries

> Fabio Mogavero (joint work with Simone Bova)

Università degli Studi di Napoli Federico II

68NQRT Seminar - IRISA/INRIA December 9, 2021

AN INTERESTING & IMPORTANT QUESTION

The Question

Why is modal logic so robustly decidable?

The Model-Theoretic Answer

Bounded-tree model property + MSOL Encoding [Vardi, 1996].

Few Further Answers

Encoding in:

- *two-variable fragment* of FOL (FOL[2VAR]) [Mortimer, 1975];
- guarded fragment of FOL (FOL[GF]) [Andréka et al., 1998];
- unary-negation fragment of FOL (FOL[UN]) [ten Cate and Segoufin, 2011].

ANALYSIS OF FRAGMENTS

FOL[2VAR] is not robust, since simple extensions become undecidable.

FOL[GF] and FOL[UN] are robust and well behaved, since, as modal logic, they enjoy good model-theoretic and algorithmic properties.

	FOL[GF]	FOL[UN]
Model Checking	PTIME	PTIME NPTIME
Satisfiability	2EXPTIME-COMPLETE	2ExpTime-complete
Finite-Model Property	\checkmark	\checkmark
Craig's Interpolation	×	\checkmark
Beth's Definability	\checkmark	\checkmark

FOL[2VAR], FOL[GF], and FOL[UN] are orthogonal *w.r.t.* expressiveness.

ANOTHER SIGNIFICANT QUESTION

The Question

Why are extensions of modal logic, as ATL* and SL[1G], decidable?

The High-Level Answer

Bounded-tree model property + MSOL Encoding [Schewe, 2008, M., Murano, Perelli, Vardi, 2012].

A Specific Problem

Why do they enjoy the bounded-tree model property in the first place?

A FIRST-ORDER ENCODING

Consider the ATL^{*} formula $[[a, b, c]] \neg \psi$ over a game with the four agents *a*, *b*, *c*, and *d*, where ψ is an LTL formula.

It asserts that agent *d* has a strategy, which depends upon those chosen by the other three ones, ensuring that the property ψ does not hold.

We can encode this property by means of the FOL sentence $\forall a \forall b \forall c \exists d \neg R_{\psi}(a, b, c, d)$, where R_{ψ} is the characteristic relation for ψ , *i.e.*, it is true *iff* the strategy profile (a, b, c, d) satisfies the property.

CLASSIC CONSTRAINT VIOLATION

The FOL sentence $\varphi = \forall a \forall b \forall c \exists d \neg R_{\psi}(a, b, c, d) \dots$

- has more than two variables: $\varphi \notin FOL[2VAR]$;
- quantifications are not guarded: $\varphi \notin \text{FOL}[GF]$;
- negation is applied to more than one free variable: $\varphi \notin FOL[UN]$.

We cannot derive the good algorithmic properties of ATL* and SL[1G] from known fragments of FOL.

 φ has quantification prefix $\forall^3 \exists$, so it does not even belong to any of the decidable prefix-vocabulary classes [Börger et al., 1997].

OUR CONTRIBUTIONS

- 1 Introduction of a new way to classify FOL fragments.
- Definition of a new model-theoretic property which allows to generalise the concept of Herbrand model.

The fragments are based on the binding forms admitted in a sentence, *i.e.*, on the way the arguments of a relation can be bound to a variable.

This study allows to answer:

- **3** the question about the decidability of ATL* and SL[1G];
- ④ an open problem in database theory.

A TALE OF LOGIC CONNECTIONS

- 1 The *Herbrand Property* of functional first-order models.
- 2 The decidability of Conjunctive Binding Logic satisfiability.
- 3 The decidability of *Quantified Conjunctive Query* containment.
- 4 A Chandra-Merlin characterisation of QCQ containment.

A TALE OF LOGIC CONNECTIONS

1 The *Herbrand Property* of functional first-order models.

- * A structure *A* enjoys the Herbrand Property if:
 - two terms (*semantically*) *equalize* over *A iff* they (*syntactically*) *unify*.
- **2** The decidability of *Conjunctive Binding Logic* satisfiability.
- 3 The decidability of Quantified Conjunctive Query containment.
- 4 A Chandra-Merlin characterisation of QCQ containment.

A TALE OF LOGIC CONNECTIONS

1 The *Herbrand Property* of functional first-order models.

2 The decidability of *Conjunctive Binding Logic* satisfiability.

- * CBL is a fragment of First-Order Logic:
 - quantifications of *conjunctions* of formulas on the *same bindings*;
 - example: $\forall x \exists y \forall z . R(x, y) \land (R(y, z) \lor \neg P(y, z)).$

3 The decidability of Quantified Conjunctive Query containment.

4 A Chandra-Merlin characterisation of QCQ containment.

A TALE OF LOGIC CONNECTIONS

- The *Herbrand Property* of functional first-order models.
- 2 The decidability of *Conjunctive Binding Logic* satisfiability.
- 3 The decidability of *Quantified Conjunctive Query* containment.
 - * QCQs are an extension of classic Conjunctive Queries:
 - arbitrary quantifications of conjunctions of positive atoms;
 - fragment of CBL with no disjunction or negation;
 - example: $\forall x \exists y \forall z . R(x, y) \land R(y, z) \land P(z, y, x).$

4 A Chandra-Merlin characterisation of QCQ containment.

A TALE OF LOGIC CONNECTIONS

- **①** The *Herbrand Property* of functional first-order models.
- 2 The decidability of *Conjunctive Binding Logic* satisfiability.
- 3 The decidability of *Quantified Conjunctive Query* containment.
- 4 A Chandra-Merlin characterisation of QCQ containment.
 - * Generalisation of CQ containment via homomorphism:
 - $\varphi_1 \models \varphi_2$ iff there is an "homomorphism" from φ_2 to φ_1 that complies with the quantification prefixes of both φ_1 and φ_2 .

Preface	Quantified Conjunctive Queries	Conjunctive Binding Logic	Conclusion
0000000	000000000	00000	00000

Quantified Conjunctive Queries

QUANTIFIED CONJUNCTIVE QUERIES

Relational fragment of first-order logic obtained by using \forall , \exists , and \land .

Example

 $\forall x \exists y \forall z. (Px \land Rxy \land Ryz \land Qz)$

- Relational positive Herbrand logic in mathematical logic.
- *Quantified constraint satisfaction problems* in constraint satisfaction.

Conjunctive queries (CQs) are QCQs without \forall .

The Problem

Instance: A pair (φ_1, φ_2) of QCQs. Question: $\varphi_1 \models \varphi_2$?

Chen, Madelaine, & Martin (LICS'08 & LMCS'15)

Question: Is entailment of QCQs decidable?Answer: Yes it is, belongs to 3EXPTIME, but NPTIME-HARD!Question: Do entailment and finite entailment coincide?Answer: Open problem.Question: Is finite entailment decidable?Answer: Open problem.

The Problem

Instance: A pair (φ_1, φ_2) of QCQs. Question: $\varphi_1 \models \varphi_2$?

Chen, Madelaine, & Martin (LICS'08 & LMCS'15)

Question: Is entailment of QCQs decidable?Answer: Yes it is, belongs to 3EXPTIME, but NPTIME-HARD!Question: Do entailment and finite entailment coincide?Answer: Open problem.Question: Is finite entailment decidable?Answer: Open problem.

The Problem

Instance: A pair (φ_1, φ_2) of QCQs. Question: $\varphi_1 \models \varphi_2$?

Chen, Madelaine, & Martin (LICS'08 & LMCS'15)

Question: Is entailment of QCQs decidable?

Answer: Yes it is, belongs to **3EXPTIME**, but **NPTIME-HARD**!

Question: Do entailment and finite entailment coincide?

Answer: Open problem.

Question: Is finite entailment decidable?

Answer: Open problem.

The Problem

Instance: A pair (φ_1, φ_2) of QCQs. Question: $\varphi_1 \models \varphi_2$?

Bova & M. (LICS'17)

- Entailment and finite entailment of QCQs coincide.
- NPTIME-COMPLETE.

Observation

Positive instances of CQ Containment have small refutations!

$$\exists x . R(x, x) \models \exists y, z, w . R(y, z) \land R(z, w)$$

$$iff$$

$$R(c_x, c_x) \land \forall y, z, w . \neg R(y, z) \lor \neg R(z, w) \text{ is unsatisfiable.}$$

$$\underline{R(c_x, c_x)} \xrightarrow{R(c_x, c_x)} \neg R(y, z) \lor \neg R(z, w)$$

$$w \mapsto c_x$$

Observation

Positive instances of CQ Containment have small refutations!

$$\exists x \, . \, R(x,x) \models \exists y, z, w \, . \, R(y,z) \land R(z,w)$$
iff

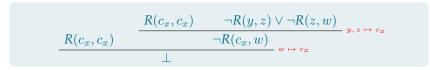
 $R(c_x,c_x) \wedge orall y, z, w$. $\neg R(y,z) \vee \neg R(z,w)$ is unsatisfiable.

Observation

Positive instances of CQ Containment have small refutations!

$$\exists x . R(x, x) \models \exists y, z, w . R(y, z) \land R(z, w)$$
iff

$$R(c_x, c_x) \land \forall y, z, w . \neg R(y, z) \lor \neg R(z, w)$$
 is unsatisfiable.



Observation

Positive instances of CQ Containment have small refutations!

$$\exists x . R(x, x) \models \exists y, z, w . R(y, z) \land R(z, w)$$

iff
 $R(c_x, c_x) \land \forall y, z, w . \neg R(y, z) \lor \neg R(z, w)$ is unsatisfiable.

$$\begin{array}{c|c} R(c_x,c_x) & \neg R(y,z) \lor \neg R(z,w) \\ \hline R(c_x,c_x) & \neg R(c_x,w) \\ \hline \bot & w \mapsto c_x \end{array}$$

Result

Positive instances of QCQ Containment have small refutations as well!

$$\exists x \forall y \, . \, R(x,y) \models \forall u, v \, \exists z \, . \, (R(z,u) \land R(z,v))$$

$$\forall y . R(c_x, y) \land \forall z . \neg R(z, c_u) \lor \neg R(z, c_v)$$
 is unsatisfiable.

$$\frac{R(c_x, y_1)}{(c_x, y_2)} \xrightarrow{R(c_x, y_1)} \frac{\neg R(z, c_u) \lor \neg R(z, c_v)}{\neg R(c_x, c_v)} \xrightarrow{y_1 \mapsto c_u; z \mapsto c_x} \frac{\neg R(c_x, c_v)}{(u_1 \mapsto c_v)}$$

Result

Positive instances of QCQ Containment have small refutations as well!

$$\exists x \forall y \, . \, R(x, y) \models \forall u, v \, \exists z \, . \, (R(z, u) \land R(z, v))$$
iff

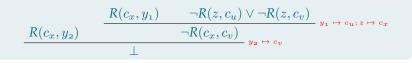
 $\forall y . R(c_x, y) \land \forall z . \neg R(z, c_u) \lor \neg R(z, c_v)$ is unsatisfiable.

Result

Positive instances of QCQ Containment have small refutations as well!

$$\exists x \forall y . R(x, y) \models \forall u, v \exists z . (R(z, u) \land R(z, v))$$

iff
$$\forall y . R(c_x, y) \land \forall z . \neg R(z, c_u) \lor \neg R(z, c_v)$$
is unsatisfiable.

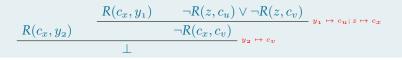


Result

Positive instances of QCQ Containment have small refutations as well!

$$\exists x \forall y . R(x, y) \models \forall u, v \exists z . (R(z, u) \land R(z, v))$$
iff

$$\forall y . R(c_x, y) \land \forall z . \neg R(z, c_u) \lor \neg R(z, c_v)$$
 is unsatisfiable.



Result

Positive instances of QCQ Containment have small refutations too!

$$\forall y \exists x \, . \, R(x,y) \models \forall u \, \exists z, v \, . \, (R(z,u) \land R(v,z))$$

 $\forall y . R(f_x(y), y) \land \forall z, v . \neg R(z, c_u) \lor \neg R(v, z)$ is unsatisfiable.

$$\frac{R(f_x(y_1), y_1) \quad \neg R(z, c_u) \lor \neg R(v, z)}{\neg R(y_1), y_2} \xrightarrow{y_1 \mapsto c_u; z \mapsto f_x(c_u)} \frac{\varphi_1(y_1), \varphi_2(z_u)}{\varphi_1(y_1), \varphi_2(z_u), \varphi_2(z_u)} \xrightarrow{y_1 \mapsto c_u; z \mapsto f_x(c_u)} \frac{\varphi_1(z_u), \varphi_2(z_u)}{\varphi_1(z_u), \varphi_2(z_u)} \xrightarrow{y_1 \mapsto c_u; z \mapsto f_x(z_u)} \frac{\varphi_1(z_u), \varphi_2(z_u)}{\varphi_1(z_u), \varphi_2(z_u)} \xrightarrow{\varphi_1(z_u), \varphi_2(z_u)} \frac{\varphi_1(z_u), \varphi_2(z_u)}{\varphi_1(z_u), \varphi_2(z_u)}$$

The unification $y_1 \mapsto c_u; y_2, z \mapsto f_x(c_u); v \mapsto f_x(f_x(c_u))$ induces a Skolem homomorphism from $\forall u \exists z.v.(R(z,u) \land R(v,z))$ to $\forall y \exists x.R(x,y)$.

Result

Positive instances of QCQ Containment have small refutations too!

$$\forall y \exists x \, . \, R(x, y) \models \forall u \, \exists z, v \, . \, (R(z, u) \land R(v, z))$$

iff $\forall y . R(f_x(y), y) \land \forall z, v . \neg R(z, c_u) \lor \neg R(v, z)$ is unsatisfiable.

$$\frac{R(f_x(y_1), y_1) - R(z, c_u) \vee \neg R(v, z)}{\neg R(y_1), y_2} \xrightarrow{y_1 \mapsto c_u; z \mapsto f_x(c_u)} \frac{\varphi_1(f_x(y_1), y_1) - \varphi_2(z, c_u)}{\varphi_1(f_x(c_u)), y_1 \mapsto f_x(f_x(c_u))}$$

The unification $y_1 \mapsto c_u; y_2, z \mapsto f_x(c_u); v \mapsto f_x(f_x(c_u))$ induces a Skolem homomorphism from $\forall u \exists z, v.(R(z, u) \land R(v, z))$ to $\forall y \exists x.R(x, y)$.

Result

Positive instances of QCQ Containment have small refutations too!

$$\forall y \exists x \, . \, R(x, y) \models \forall u \, \exists z, v \, . \, (R(z, u) \land R(v, z))$$

iff $\forall y . R(f_x(y), y) \land \forall z, v . \neg R(z, c_u) \lor \neg R(v, z)$ is unsatisfiable.

$$\frac{R(f_x(y_1), y_1) \quad \neg R(z, c_u) \lor \neg R(v, z)}{\neg R(y_1), y_2} \xrightarrow{y_1 \mapsto c_u; z \mapsto f_x(c_u)} \frac{\varphi_1 \mapsto e_u; z \mapsto f_x(c_u)}{\varphi_1 \mapsto f_x(f_x(c_u))}$$

The unification $y_1 \mapsto c_u; y_2, z \mapsto f_x(c_u); v \mapsto f_x(f_x(c_u))$ induces a Skolem homomorphism from $\forall u \exists z.v.(R(z,u) \land R(v,z))$ to $\forall y \exists x.R(x,y)$.

Result

Positive instances of QCQ Containment have small refutations too!

$$\forall y \exists x \, . \, R(x, y) \models \forall u \, \exists z, v \, . \, (R(z, u) \land R(v, z))$$

iff $\forall y . R(f_x(y), y) \land \forall z, v . \neg R(z, c_u) \lor \neg R(v, z)$ is unsatisfiable.

$$\frac{R(f_x(y_1), y_1) \quad \neg R(z, c_u) \lor \neg R(v, z)}{\neg R(v, f_x(c_u))} \underbrace{\begin{array}{c} y_1 \mapsto c_u; z \mapsto f_x(c_u) \\ \downarrow \end{array}}_{y_2 \mapsto f_x(c_u), v \mapsto f_x(f_x(c_u))}$$

The unification $y_1 \mapsto c_u; y_2, z \mapsto f_x(c_u); v \mapsto f_x(f_x(c_u))$ induces a Skolem homomorphism from $\forall u \exists z, v.(R(z, u) \land R(v, z))$ to $\forall y \exists x.R(x, y)$.

Definition

A *Skolem homomorphism* from $\varphi_2 = \wp_2 \chi_2$ to $\varphi_1 = \wp_1 \chi_1$ is a substitution σ of variables of \wp_2 by terms on the vocabulary of $\mathsf{sk}_{\wp_1}(\chi_1)$ such that:

- $lacksymbol{1}$ universal variables in \wp_2 maps injectively via $\sigma;$
- 2 every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, \ldots, x_k)$ in χ_2 has an atom $R(t_1, \ldots, t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), \ldots, \sigma(x_k))$ and $R(t_1, \ldots, t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

Definition

A *Skolem homomorphism* from $\varphi_2 = \wp_2 \chi_2$ to $\varphi_1 = \wp_1 \chi_1$ is a substitution σ of variables of \wp_2 by terms on the vocabulary of $\mathsf{sk}_{\wp_1}(\chi_1)$ such that:

1 universal variables in \wp_2 maps injectively via σ ;

- 2 every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, \ldots, x_k)$ in χ_2 has an atom $R(t_1, \ldots, t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), \ldots, \sigma(x_k))$ and $R(t_1, \ldots, t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

Definition

A *Skolem homomorphism* from $\varphi_2 = \varphi_2 \chi_2$ to $\varphi_1 = \varphi_1 \chi_1$ is a substitution σ of variables of φ_2 by terms on the vocabulary of $\mathsf{sk}_{\varphi_1}(\chi_1)$ such that:

- **1** universal variables in \wp_2 maps injectively via σ ;
- every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, \ldots, x_k)$ in χ_2 has an atom $R(t_1, \ldots, t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), \ldots, \sigma(x_k))$ and $R(t_1, \ldots, t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

Definition

A *Skolem homomorphism* from $\varphi_2 = \varphi_2 \chi_2$ to $\varphi_1 = \varphi_1 \chi_1$ is a substitution σ of variables of φ_2 by terms on the vocabulary of $\mathsf{sk}_{\varphi_1}(\chi_1)$ such that:

- **1** universal variables in \wp_2 maps injectively via σ ;
- every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, ..., x_k)$ in χ_2 has an atom $R(t_1, ..., t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), ..., \sigma(x_k))$ and $R(t_1, ..., t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

Definition

A *Skolem homomorphism* from $\varphi_2 = \varphi_2 \chi_2$ to $\varphi_1 = \varphi_1 \chi_1$ is a substitution σ of variables of φ_2 by terms on the vocabulary of $\mathsf{sk}_{\varphi_1}(\chi_1)$ such that:

- **1** universal variables in \wp_2 maps injectively via σ ;
- every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, ..., x_k)$ in χ_2 has an atom $R(t_1, ..., t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), ..., \sigma(x_k))$ and $R(t_1, ..., t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

Definition

A *Skolem homomorphism* from $\varphi_2 = \varphi_2 \chi_2$ to $\varphi_1 = \varphi_1 \chi_1$ is a substitution σ of variables of φ_2 by terms on the vocabulary of $\mathsf{sk}_{\varphi_1}(\chi_1)$ such that:

- **1** universal variables in \wp_2 maps injectively via σ ;
- every existential variable x in ℘₂ maps to the term σ(x) not containing images of universal variables after x in ℘₂;
- **3** every atom $R(x_1, ..., x_k)$ in χ_2 has an atom $R(t_1, ..., t_k)$ in $\mathsf{sk}_{\wp_1}(\chi_1)$ such that $R(\sigma(x_1), ..., \sigma(x_k))$ and $R(t_1, ..., t_k)$ unify.

Chandra-Merlin (STOC'77) - Theorem for CQ

 $\varphi_1 \models \varphi_2$ *iff* there is an homomorphism from φ_2 to φ_1 .

Bova & M. (LICS'17) - Theorem for QCQ

FINITE ENTAILMENT/CONTAINMENT OF QCQs

 $\varphi_1 \models_{fin} \varphi_2$ iff φ_2 is satisfied on all *finite* models of φ_1 .

Finite entailment is the relevant notion in CS applications (*e.g.*, in query optimisation the database is finite).

Proof Approach

We proved the collapse of entailment $\varphi_1 \models \varphi_2$ and finite entailment $\varphi_1 \models_{fin} \varphi_2$ of QCQs via a *domain-preserving* reduction to the satisfiability check of a CBL sentence ψ .

FOL-provers solve (in practice) the finite QCQ-entailment problem!

FROM ENTAILMENT TO FINITE ENTAILMENT

Proof Approach

We proved the collapse of entailment $\varphi_1 \models \varphi_2$ and finite entailment $\varphi_1 \models_{fin} \varphi_2$ of QCQs via a *domain-preserving* reduction to the satisfiability check of a CBL sentence ψ .

Observations

- The results exploits the finite-model property of CBL.
- 2 It is more involved than the classic check for the satisfiability of $\varphi_1 \wedge \neg \varphi_2$, as the latter belongs to an undecidable fragment of FOL.
- ψ unsat $\Rightarrow \varphi_1 \models \varphi_2 \Rightarrow \varphi_1 \models_{fin} \varphi_2$
- ψ sat $\Rightarrow \mathcal{A} \models_{fin} \psi \Rightarrow \mathcal{A} \models_{fin} \varphi_1 \land \neg \varphi_2 \Rightarrow \varphi_1 \not\models_{fin} \varphi_2 \Rightarrow \varphi_1 \not\models \varphi_2$

FROM ENTAILMENT TO FINITE ENTAILMENT

Proof Approach

We proved the collapse of entailment $\varphi_1 \models \varphi_2$ and finite entailment $\varphi_1 \models_{fin} \varphi_2$ of QCQs via a *domain-preserving* reduction to the satisfiability check of a CBL sentence ψ .

Observations

- 1 The results exploits the finite-model property of CBL.
- 2 It is more involved than the classic check for the satisfiability of $\varphi_1 \wedge \neg \varphi_2$, as the latter belongs to an undecidable fragment of FOL.
- ψ unsat $\Rightarrow \varphi_1 \models \varphi_2 \Rightarrow \varphi_1 \models_{fin} \varphi_2$
- ψ sat $\Rightarrow \mathcal{A} \models_{fin} \psi \Rightarrow \mathcal{A} \models_{fin} \varphi_1 \land \neg \varphi_2 \Rightarrow \varphi_1 \not\models_{fin} \varphi_2 \Rightarrow \varphi_1 \not\models \varphi_2$

FROM ENTAILMENT TO FINITE ENTAILMENT

Proof Approach

We proved the collapse of entailment $\varphi_1 \models \varphi_2$ and finite entailment $\varphi_1 \models_{fin} \varphi_2$ of QCQs via a *domain-preserving* reduction to the satisfiability check of a CBL sentence ψ .

Observations

- 1 The results exploits the finite-model property of CBL.
- 2 It is more involved than the classic check for the satisfiability of $\varphi_1 \wedge \neg \varphi_2$, as the latter belongs to an undecidable fragment of FOL.
- ψ unsat $\Rightarrow \varphi_1 \models \varphi_2 \Rightarrow \varphi_1 \models_{fin} \varphi_2$
- ψ sat $\Rightarrow \mathcal{A} \models_{fin} \psi \Rightarrow \mathcal{A} \models_{fin} \varphi_1 \land \neg \varphi_2 \Rightarrow \varphi_1 \not\models_{fin} \varphi_2 \Rightarrow \varphi_1 \not\models \varphi_2$

Preface	Quantified Conjunctive Queries	Conjunctive Binding Logic	Conclusion
0000000	00000000	●0000	00000

Conjunctive Binding Logic

CONJUNCTIVE BINDING LOGIC

CBL Syntax

Positive Boolean combinations of sentences $\wp(\psi_1 \land \psi_2 \land \ldots \land \psi_k)$:

- \wp is an arbitrary quantification prefix;
- ψ_i is a Boolean combinations of atoms over the same binding (*i.e.*, same association of variables with positions in a relation).
- $\forall x \exists y \forall z . R(x, y) \land (R(y, z) \lor \neg P(y, z)) \checkmark$
- $\forall x \exists y \forall z . R(x, y) \land (R(x, y) \lor \neg P(y, z)) \times$

CBL is incomparable with other FOL fragments (FOL[GF], FOL[UN]).

Conjunctive Binding Logic

MAIN PROPERTIES OF CBL

Results for CBL

- Finite-model property.
- **2** Decidable satisfiability (Σ_3^P -COMPLETE).

Satisfiability Criterion

 $\varphi \in \text{CBL}$ is sat *iff* there is an implicant where all atoms over the same relation and unifying bindings agree on the polarity.

- $\varphi = \exists x \forall y \, . \, R(x,y) \land \neg R(y,x) \text{ is sat } \textit{iff} \, \forall y \, . \, R(c_x,y) \land \neg R(y,c_x) \text{ is sat:}$
 - (c_x, y) and (y, c_x) unify $\Rightarrow \varphi$ is unsat.

 $\varphi = \forall y \exists x \, . \, R(x,y) \land \neg R(y,x) \text{ is sat } \textit{iff} \, \forall y \, . \, R(f_x(y),y) \land \neg R(y,f_x(y)) \text{ is sat:}$

• $(f_x(y), y)$ and $(y, f_x(y))$ do not unify $\Rightarrow \varphi$ is sat.

Conjunctive Binding Logic

HERBRAND PROPERTY (I)

Two terms $s(x_1, \ldots, x_n)$, $t(x_1, \ldots, x_n)$ are *equalizable* on a structure A if $A \models \exists x_1, \ldots, x_n \cdot s(x_1, \ldots, x_n) = t(x_1, \ldots, x_n)$

Herbrand Property of *A*: two terms *equalize* over *A iff* they *unify*.

HERBRAND PROPERTY (II)

Herbrand Property of *A*: two terms *equalize* over *A iff* they *unify*.

The Satisfiability Criterion for CBL is based on the Herbrand Property:

- two unifying bindings do equalize (*i.e.*, may assume the same value) on all models;
- there is a (finite) model on which all non-unifying bindings do not equalize.
- Structures satisfying HP are called Quasi-Herbrand Models.
- Standard Herbrand Models satisfy HP.

Preface	Quantified Conjunctive Queries	Conjunctive Binding Logic	Conclusion
0000000	000000000	00000	•0000

Conclusion

SUMMING UP

- Introduction and study of a new decidable fragment of FOL.
- 2 Identification of a model-theoretic property, namely the Herbrand Property, useful to prove the decidability of fragments of first order logic with functions.
- **③** Solution of the open problem about QCQ (finite) containment.
- ④ Discover of another reason why ATL[★] and SL[1G] are decidable.

Thank you!

REFERENCES I

- - Andréka, H., van Benthem, J., and Németi, I. (1998). Modal Languages And Bounded Fragments Of Predicate Logic. IPL, 27(3):217–274.

Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Decision Problem. Perspectives in Mathematical Logic. Springer.

Mogavero, F., Murano, A., Perelli, G., and Vardi, M. (2012). What Makes ATL* Decidable? A Decidable Fragment of Strategy Logic. In CONCUR'12, LNCS 7454, pages 193–208. Springer.

Mortimer, M. (1975).

On Languages with Two Variables. MLQ, 21(1):135-140.

Schewe, S. (2008).

ATL* Satisfiability is 2ExpTime-Complete.

In ICALP'08, LNCS 5126, pages 373–385. Springer.

REFERENCES II

ten Cate, B. and Segoufin, L. (2011).

Unary Negation.

In STACS'11, LIPIcs 9, pages 344–355. Leibniz-Zentrum fuer Informatik.

Vardi, M. (1996).

Why is Modal Logic So Robustly Decidable?

In *DCFM'96*, pages 149–184. AMS.