Finite State Automata for Directed Acyclic Graphs

Yvo Meeres

University of Leipzig

December 16th, 2021 15 CET © Séminaire 68NQRT de l'IRISA et d'Inria Rennes

<□▶ <@▶ <≧▶ <볼≯

うみで

Ш

Part I

Motivation & Intuition

Motivation: Are FSAs capable of recognizing graph languages?

FSAs4DAGs

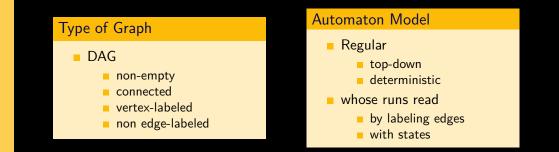
Y. Meeres

Finite string star grass Infinite saw rainbow tree

Made Finite saw rainbow tree

Can FSAs read graphs?

Starting point from literature: a limited graph automaton model.



うくで

< □ >

Intuition

FSAs4DAGs

Y. Meeres

Finite STRING STAR GRASS Infinite SAW RAINBOW TREE Made Finite SAW

```
For the next 15 minutes of the talk,
you are an automaton.
You start as an ordinary DAG automaton.
                                 you will become an FSA.
  <u>B</u>ut ...
                                 You will turn into a
                                 Finite
                                 State
                                 Automaton.
                                                            C00
                                 You are so
                                                   . . .
```

Definition

FSAs4DAGs

Y. Meeres

Finite STRING STAR GRASS Infinite SAW

RAINBOW TREE

Made Finit saw rainbow tree

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \twoheadrightarrow \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

FSAs4DAGs

Y. Meeres

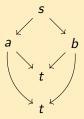
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow (s) \not \Rightarrow pq, p \not \Rightarrow (a) \not \Rightarrow qq, q \not \Rightarrow (b) \not \Rightarrow pp, qp \not \Rightarrow (t) \not \Rightarrow \lambda\}$



◆□▶ ◆母▶ ◆≧▶ ◆≧▶ = 少へで

FSAs4DAGs

Y. Meeres

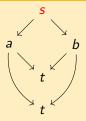
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **•** *R* is a finite set of rules of the form $\alpha \twoheadrightarrow (\sigma) \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R)$ where $R = \{\lambda \ast (s) \ast pq, p \ast (a) \ast qq, q \ast (b) \ast pp, qp \ast (t) \ast \lambda\}$



FSAs4DAGs

Y. Meeres

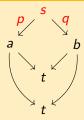
res Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **•** *R* is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{ \lambda \not\Rightarrow (s) \not\Rightarrow pq, p \not\Rightarrow (a) \not\Rightarrow qq, q \not\Rightarrow (b) \not\Rightarrow pp, qp \not\Rightarrow (t) \not\Rightarrow \lambda \}$



◆□▶ ◆□▶ ◆≧▶ ◆≧▶ 差 ∽��?

FSAs4DAGs

Y. Meeres

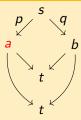
■ Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **•** *R* is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow (s) \not \Rightarrow pq, p \not \Rightarrow (a) \not \Rightarrow qq, q \not \Rightarrow (b) \not \Rightarrow pp, qp \not \Rightarrow (t) \not \Rightarrow \lambda\}$



FSAs4DAGs

Y. Meeres

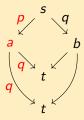
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow g \not \Rightarrow pq, p \not \Rightarrow g \not \Rightarrow qq, q \not \Rightarrow b \not \Rightarrow pp, qp \not \Rightarrow t \not \Rightarrow \lambda\}$



(□) (**□**)

FSAs4DAGs

Y. Meeres

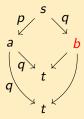
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **•** *R* is a finite set of rules of the form $\alpha \twoheadrightarrow (\sigma) \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R)$ where $R = \{\lambda \# \texttt{s} \# pq, p \# \texttt{a} \# qq, q \# \texttt{b} \# pp, qp \# \texttt{t} \# \lambda\}$



FSAs4DAGs

Y. Meeres

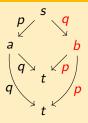
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **•** *R* is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow g \not \Rightarrow pq, p \not \Rightarrow g \not \Rightarrow qq, q \not \Rightarrow b \not \Rightarrow pp, qp \not \Rightarrow (t) \not \Rightarrow \lambda\}$



|□▶◀♬▶◀돌▶◀돌▶ 돌 ∽੧੧

FSAs4DAGs

Y. Meeres

Finite STRING STAR GRASS Infinite SAW

RAINBOW TREE

Made Fin saw rainbow tree

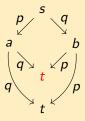
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow g \not \Rightarrow pq, p \not \Rightarrow g \not \Rightarrow qq, q \not \Rightarrow b \not \Rightarrow pp, qp \not \Rightarrow t \not \Rightarrow \lambda\}$



FSAs4DAGs

Y. Meeres

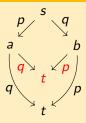
es Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow g \not \Rightarrow pq, p \not \Rightarrow g \not \Rightarrow qq, q \not \Rightarrow b \not \Rightarrow pp, qp \not \Rightarrow t \not \Rightarrow \lambda\}$



FSAs4DAGs

Y. Meeres

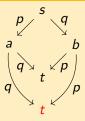
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \not \Rightarrow g \not \Rightarrow pq, p \not \Rightarrow g \not \Rightarrow qq, q \not \Rightarrow b \not \Rightarrow pp, qp \not \Rightarrow t \not \Rightarrow \lambda\}$



(□▶ ◀舂▶ ◀≧▶ ◀≧▶ / 差 / りへ()

FSAs4DAGs

Y. Meeres

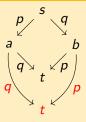
Definition

A regular DAG automaton is a triple $A = (Q, \Sigma, R)$ where

- Q is a finite set of states,
- Σ is a finite alphabet and
- **R** is a finite set of rules of the form $\alpha \twoheadrightarrow \sigma \gg \beta$ where $\sigma \in \Sigma$ and $\alpha, \beta \in Q^*$.

Example

 $A = (\{p, q\}, \{s, a, b, t\}, R) \text{ where}$ $R = \{\lambda \rtimes (s) \gg pq, p \rtimes (a) \gg qq, q \rtimes (b) \gg pp, \frac{qp}{qp} \rtimes (t) \gg \lambda\}$



- nac

The Meta-state

FSAs4DAGs

Y. Meeres

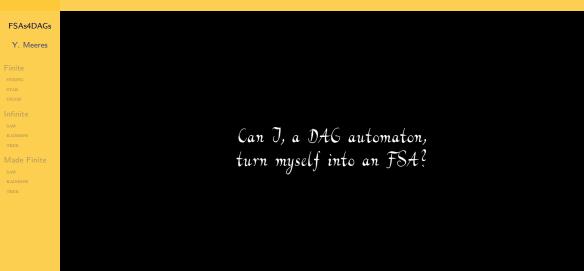
Finite string star grass Infinite saw rainbow tree

Made Finite saw RAINBOW TREE A meta-state is the multiset of states assigned to edges with at least one unread neighbouring vertex.

Definition

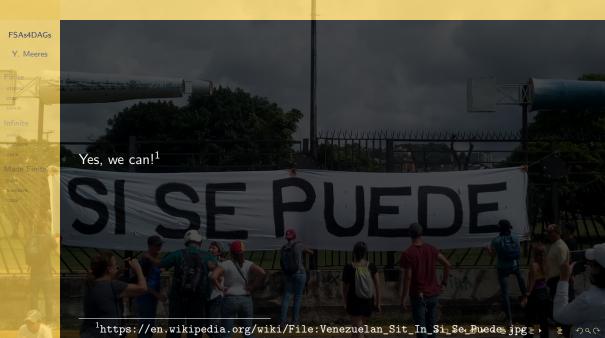
A meta-state q is an element of the multiset over Q, \mathbb{N}^Q . A derivation DAG G is a DAG with a (partial) run, thus (partially) labeled edges. We let <u>G</u> denote the meta-state of a derivation graph G. The set of all meta-states of \mathcal{G} that occur in derivations of DAGs in $L(\mathcal{G})$ is denoted by $\mathcal{Q}(A)$.

Are FSAs capable of recognizing graph languages?

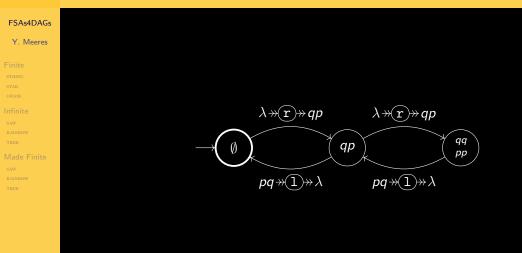


▲□▶▲□▶▲≧▶▲≧▶ ≧ りへで

FSAs 4 DAGs ?



An FSA for a DAG Automaton



▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

DAG languages

FSAs4DAGs

Y. Meeres

Finite

STRING STAR GRASS nfinite SAW RAINBOW TREE

Made Finito SAW RAINBOW TREE

Finite Induced Meta-States STRING STAR GRASS Infinite Meta-States SAW RAINBOW TREE

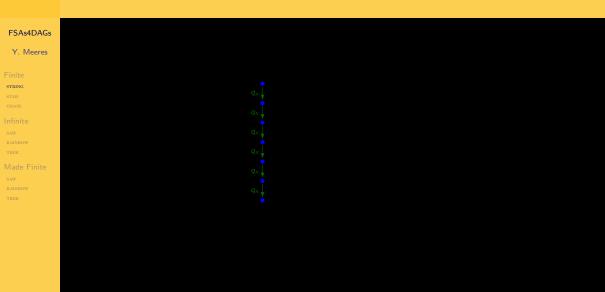
Finite Meta-States by Limiting Meta-states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

うくで

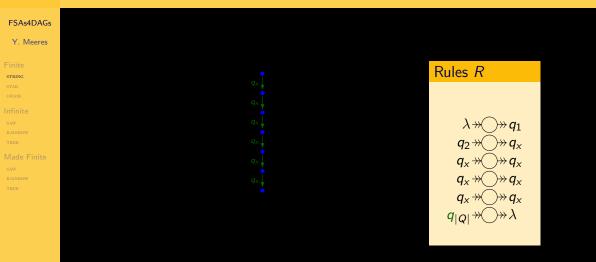
- SAW
- RAINBOW
- TREE

STRING



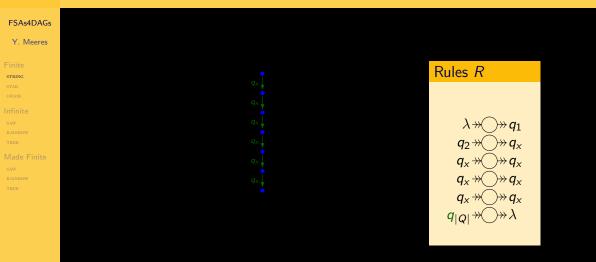
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへで

STRING



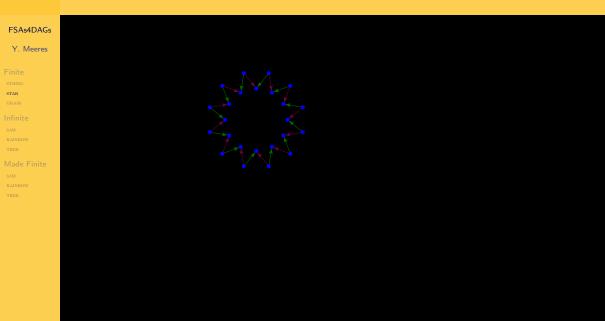
◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶

STRING

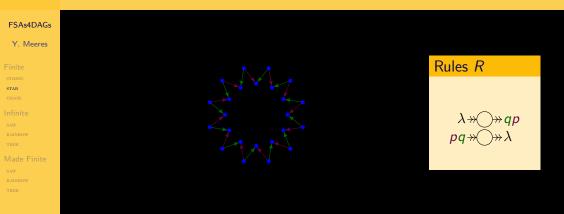


◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶

STAR

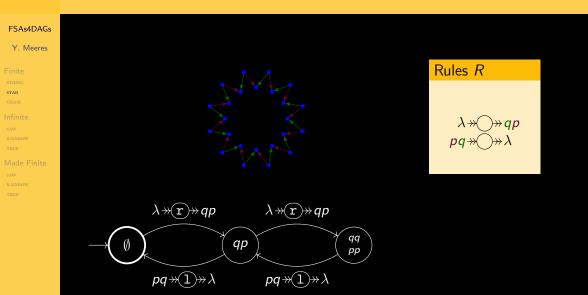


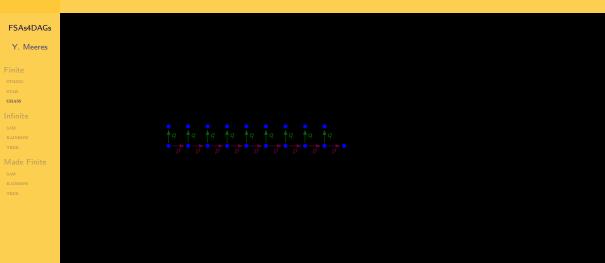
STAR



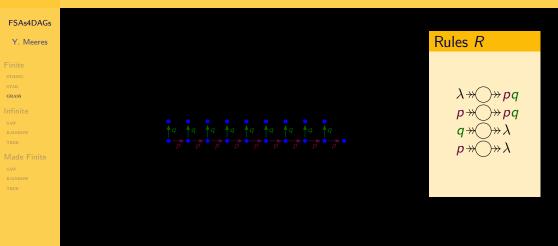
▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

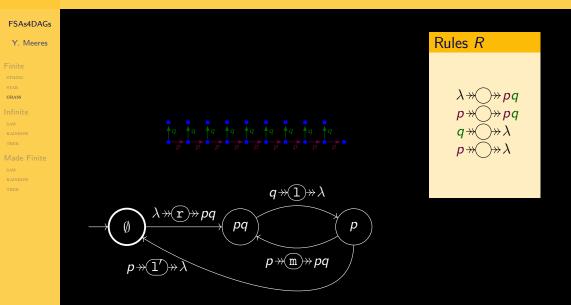
STAR

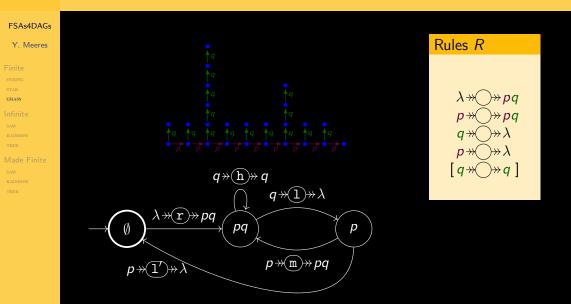




▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへで







DAG languages

FSAs4DAGs

Y. Meeres

Finite string

GRASS

Infinite

SAW RAINBOW TREE

Made Finite saw rainbow tree

Finite Induced Meta-State

STAR

■ GRASS

Infinite Meta-States

■ SAW

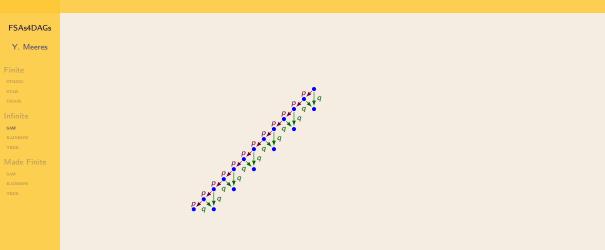
RAINBOW

■ TREE

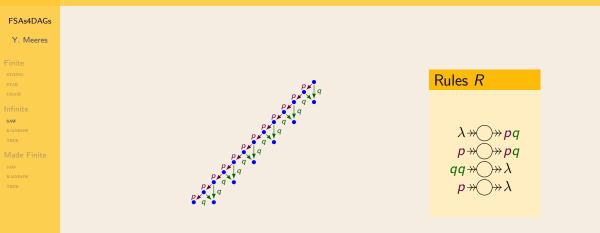
Finite Meta-States by Limiting Meta-states

- SAW
- RAINBOW
- **TREE**

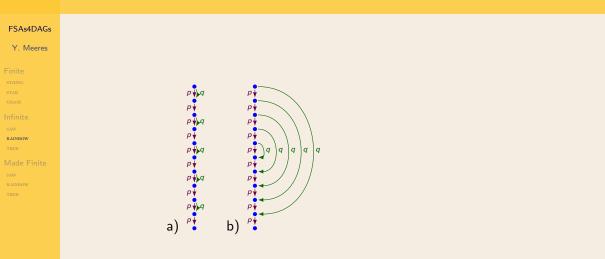
SAW



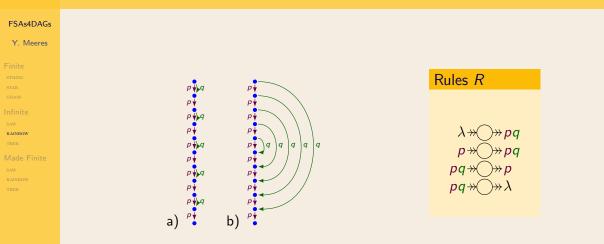
SAW



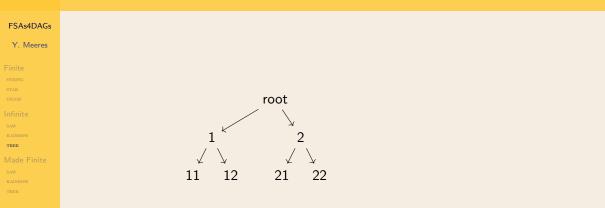
RAINBOW



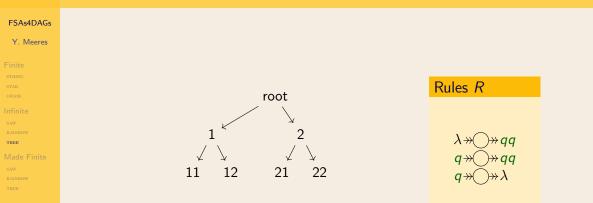
RAINBOW



TREE



TREE



DAG languages

FSAs4DAGs

Y. Meeres

- Finite string star grass nfinite saw
- RAINBOW TREE

Made Finite saw rainbow tree

- Finite Induced Meta-States
 - STRING
 - **STAR**
 - GRASS
- Infinite Meta-States
 - SAW
 - RAINBOW
 - TREE

Finite Meta-States by Limiting Meta-states

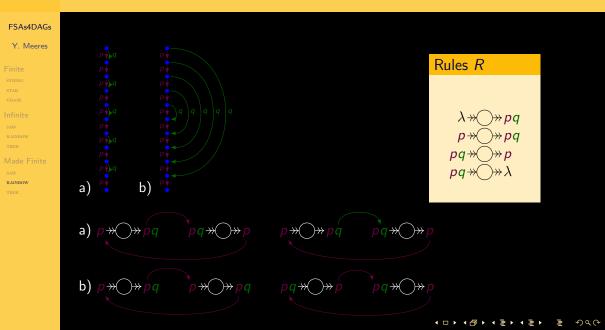
- SAW
- RAINBOW
- TREE

SAW

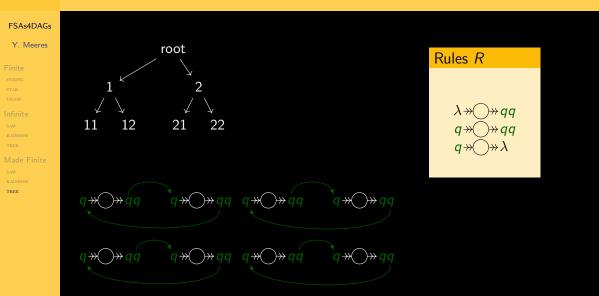
FSAs4DAGs Y. Meeres Rules R *λ* ₩) ₩ *pq p**) *p* $qq \gg \tilde{} \lambda$ *p* ₩Õ₩λ SAW a) b) $\lambda \gg \longrightarrow$ (→ $ightarrow \lambda$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

RAINBOW

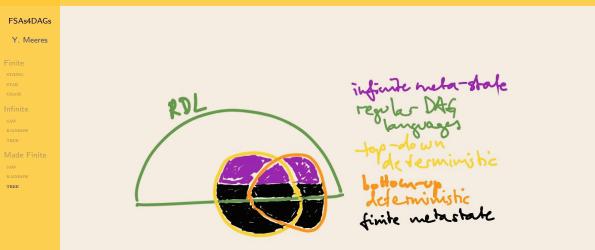


TREE



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Language Hierarchy



・ロト・日本・日本・日本・日本・日本

Part II

The Formal Part

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Meta-states \mathcal{Q}_{min} for the FSA

FSAs4DAGs

Y. Meeres

$\mathcal{Q}_{\mathsf{min}}$

Finite

Infinit

RDI

Char

Reference

The smallest set of meta-states with which A can read all DAGs L(A):

Definition

For a DAG automaton $A = (Q, \Sigma, R)$, we denote by $Q_{\min}(A)$ any set of meta-states such that

1 every DAG $G \in L(A)$ has a run including G_n , such that $\underline{G_0}, \ldots, \underline{G_n} \in \mathcal{Q}_{\min}(A)$, and

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

2 there is no meta-state of smaller cardinality with this property.

Finite \mathcal{Q}_{min} , finite \mathcal{Q}_0

FSAs4DAGs

Y. Meeres

 $\mathcal{Q}_{\mathsf{min}}$

Finite Infinite RDL

. .

Q(A) is the set-of all meta-states that can occur in a run for a DAG in L(A).

Lemma

There exist DAG automata A for which both Q_{min} and Q(A) are finite.

Finite $\mathcal{Q}_{min},$ infinite \mathcal{Q}_0

FSAs4DAGs

Y. Meeres

 $\mathcal{Q}_{\mathsf{min}}$

Finite

Infinit

RDL

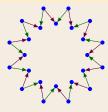
Char

References

 $\mathcal{Q}(A)$ is the set-of all meta-states that can occur in a run for a DAG in L(A).

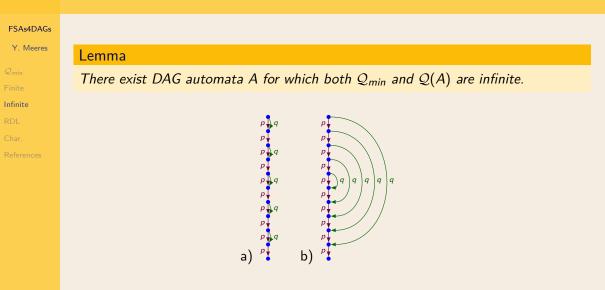
Lemma

There exist DAG automata A for which $Q_{min}(A)$ is finite whereas Q(A) is infinite.



・ロト ・日・・日・・日・ シック

Infinite \mathcal{Q}_{min} , infinite \mathcal{Q}_0



▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ● ● ● ●

$\mathsf{FD} \nsubseteq \mathit{RDL}^{\mathsf{det}}$

FSAs4DAGs

Y. Meeres

 $\mathcal{Q}_{\mathsf{min}}$

Finite

Infinite

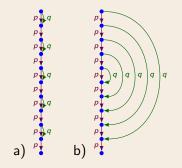
RDL

Char.

References

Lemma

Given is a minimal deterministic DAG automaton $A = (Q, \Sigma, R)$ and a finite set of meta-states Q. Let $L^{Q}(A)$ be the language generated by A if in a derivation step $G_1 \Rightarrow G_2$ is only allowed if the meta-state $\underline{G}_2 \in Q$. There exists a DAG language $L^{Q}(A)$ that is not in the class of RDL^{det} .



・ロト ・日・・日・・日・・日・

Rule Cycle

FSAs4DAGs

Y. Meeres

Q_{min} Finite Infinite RDL

Char.

References

Definition

A *rule cycle* is a nonempty sequence of marked rules $\hat{r}_1, \ldots, \hat{r}_k$ of A Such that, for all $i \in [k]$,

1 the exit state of \hat{r}_i is equal to the entry state of $\hat{r}_{i \mod k}$ and

2 \hat{r}_i is tail exited if and only if $\hat{r}_{i \mod k}$ is head entered.

The intuition is that a cycle is a sequence of rules in which each rule overlaps with the succeeding one in a cyclic fashion, i.e. modulo k.

Theorem (Theorem 6.4 of [1])

The DAG language generated by a DAG automaton $A = (Q, \Sigma, R)$ without useless rules is infinite iff R contains a rule cycle.

Characterization

FSAs4DAGs

Y. Meeres

Q_{min} Finite

Infinit

RDL

Char.

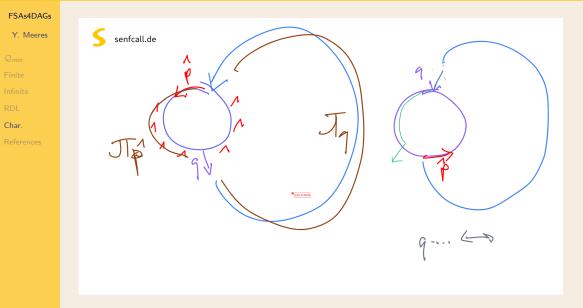
References

Lemma

For a minimal deterministic DAG automaton $A = (Q, \Sigma, R)$ its set of metastates $Q_{min}(A)$ is infinite iff there exists a rule cycle c which satisfies the following conditions:

- **1** States $q \in Q$ and $\hat{p} \in \hat{Q}$ occur in c as unmarked and marked, resp.
- **2** A derivation DAG D exists with a rule path between q and p with $\lfloor D \rfloor \in L(A)$.
- **3** The path is from q to p iff q occurs in the tail $\hat{\beta}$ of one of c's marked rules.

Characterization Proof Sketch



・ロト・日本・山田・山田・山市・山市

References

FSAs4DAG	
Y. Meeres	
\mathcal{Q}_{min}	
Finite	

RDI

Char.

References

Johannes Blum and Frank Drewes. "Language theoretic properties of regular DAG languages". In: Inf. Comput. 265 (2019), pp. 57–76. DOI: 10.1016/j.ic.2017.07.011. URL: https://doi.org/10.1016/j.ic.2017.07.011.