Towards Practical Provably Correct Algorithms for Real Quantifier Elimination

Katherine Cordwell

Carnegie Mellon University

This material in this talk is based upon work supported by the NSF under Grant No. CNS-1739629, the NSF Graduate Research Fellowship Program under Grants Nos. DGE1252522 and DGE1745016, by A*STAR Singapore, and by the AFOSR under grant number FA9550-16-1-0288. Any opinions, findings, and conclusions or recommendations expressed in this
 material are those of the author(s) and do not necessarily reflect the views of the NSF, AFOSR, or A*STAR Singapore.

Problem

- Real arithmetic questions involving the \exists (exists) and \forall (for all) quantifiers (ranging over the reals) are difficult for computers
- Quantifier elimination (QE): The process of transforming a quantified statement into a logically equivalent quantifier-free statement

Examples

Example
 $\forall \mathrm{x} . \mathrm{x}^{2}+1>0$
 True

$$
\begin{gathered}
\text { Example* } \\
\forall x \forall y \cdot\left(\left(x^{2}+a y^{2} \leq 1\right) \Rightarrow\left(a x^{2}-a^{2} x y+2 \geq 0\right)\right) \\
\text { QE } \\
(a \geq 0) \text { and }\left(a^{3}-8 a-16 \leq 0\right)
\end{gathered}
$$

QE is identifying exactly what conditions on a will make the original formula true!
*This example is taken from some of Pablo Parrilo's lecture notes (Lecture 18 of his 2006 course, "Algebraic Techniques and Semidefinite Optimization"). Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

A Miraculous Result

- Algorithms for QE exist (Tarski, 1930)
- Algorithms for QE are complicated

Alfred Tarski

Terminology

- Formulas: Conjunctions and disjunctions of polynomial inequalities and equations (with rational coefficients)
- If a formula in a QE problem involves only one variable, we call it a univariate QE problem. Else it is a multivariate QE problem
- Decision problems are problems where all variables are quantified

Examples, Revisited

Example
 $\forall \mathrm{x} . \mathrm{x}^{2}+1>0$

 True

Example*

$$
\begin{gathered}
\forall x \forall y .\left(\left(x^{2}+a y^{2} \leq 1\right) \Rightarrow\left(a x^{2}-a^{2} x y+2 \geq 0\right)\right) \\
\quad \text { QE } \\
(a \geq 0) \text { and }\left(a^{3}-8 a-16 \leq 0\right)
\end{gathered}
$$

A multivariate QE question Not a decision problem

Motivation

- Quantified statements arise in a number of applications
- Geometry proofs
- Stability analysis
- Verification of cyber-physical systems (like robots!)

For more information, see:
Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and
Satisfiability and Their Applications. Math.Comput.Sci. 11, 483-502 (2017).

Motivation

- Quantified statements arise in a number of applications
- Geometry proofs
- Stability analysis
- Verification of cyber-physical systems (like robots!)
- Two conclusions
- We want to know how to do QE
- We want to be sure that we know how to do QE correctly

Doing QE correctly

- Formally verified QE algorithms
- Implemented in theorem provers
- Have proofs of correctness
- Significantly more trustworthy than unverified algorithms

Doing QE correctly

- Formally verified QE algorithms
- Implemented in theorem provers
- Have proofs of correctness
- Significantly more trustworthy than unverified algorithms

There are QE algorithms (Tarski), we'll just verify them and be done...?

Doing QE correctly

- Challenge: Verified QE is much more difficult than unverified QE
- Problem: Dearth of efficient verified QE support
- CPS theorem prover KeYmaera X outsources QE to unverified software
- This can introduce bugs

Related Work

$$
\begin{aligned}
& =Y E S \\
X & =\text { NO } \\
& =\text { IN BETWEEN }
\end{aligned}
$$

	Efficient?	Verified?	Multivariate case builds directly on univariate?
Cohen-Hörmander			
Tarski			
CAD			

Our Approach

Twofold Approach

- Verify the Ben-Or, Kozen, and Reif (BKR) decision procedure (and its extension to a full QE algorithm by Renegar), which fits in a sweet spot in between practicality and ease of formalization
- Verify virtual substitution (VS), an extremely efficient QE algorithm that works on a fragment of QE problems

Our Approach: Verifying Virtual Substitution (VS)

Matias Scharager

Stefan Mitsch

André Platzer

Fabian Immler
M. Scharager, K. Cordwell, S. Mitsch, and A. Platzer. Verified Quadratic Virtual Substitution for Real Arithmetic. Accepted to Formal Methods (FM) 2021, to appear.

What is Virtual Substitution?

- A highly efficient QE method that works on a fragment of QE problems
- Targets problems with low-degree polynomials (linear or quadratic)
- Two flavors: Equality VS and General VS

Equality Virtual Substitution

- Works when a formula has a linear or quadratic equation:

$$
\exists x \cdot\left(a x^{2}+b x+c=0 \wedge F\right)
$$

- Can we directly substitute $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ into F?

Equality Virtual Substitution

- Works when a formula has a linear or quadratic equation:

$$
\exists x \cdot\left(a x^{2}+b x+c=0 \wedge F\right)
$$

- Can we directly substitute $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ into F?

Not without leaving the first-order logic of real arithmetic ($\mathrm{FOL}_{\mathrm{R}}$)
Instead: "virtually" substitute

Equality Virtual Substitution

- Example: ヨx. $\left(x>0 \wedge x^{2}=2 \wedge x y=1\right)$
- We'd like to virtually substitute $x=\sqrt{2}$ into $x y=1$

Equality Virtual Substitution

- Example: ヨx. $\left(x>0 \wedge x^{2}=2 \wedge x y=1\right)$
- We'd like to virtually substitute $x=\sqrt{2}$ into $x y=1$
- An appropriate $\mathrm{FOL}_{\mathrm{R}}$ formula: $\mathrm{y}>0 \wedge \mathrm{y}^{2}=1 / 2$

Key Takeaways

- VS "simulates" direct substitution in that it captures all of the logical meaning in direct substitution, but maintains formulas in FOL_R

- The presence of low-degree equalities automatically gives us a finite number of points to virtually substitute

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x \cdot\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x \cdot\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x .\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

In every interval between the roots, the polynomials have constant sign

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x .\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

In every interval between the roots, the polynomials have constant sign

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x .\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

$p^{2}-4$ and $q^{2}-4$ have the same sign
$p^{2}-4 p+3$ and $q^{2}-4 q+3$ have the same sign

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x \cdot\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

ANY point from this interval captures information for the entire interval! This allows us to discretize with sample points

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

Here are the sample points VS will pick (in red)

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x .\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

Why $-\infty$ and the ε 's? Why not $-3,0,1.5,2.5$, and 4 ?

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x \cdot\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

Why $-\infty$ and the ε 's? Why not $-3,0,1,1.5,2.5,3$, and 4 ?
VS needs to be able to generalize to arbitrary examples; can't overfit for the current example

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x .\left(a x^{2}+b x+c>0 \wedge x^{2}-4 x+3<0\right)
$$

General Virtual Substitution

- General VS allows for the presence of inequalities
- ...but then what points do we substitute?

$$
\exists x \cdot\left(x^{2}-4>0 \wedge x^{2}-4 x+3<0\right)
$$

Note: We can only use general VS when we know all of the roots of the polynomials in our formula: i.e. when all of the polynomials are linear or quadratic in the variable of interest.

Formalizing this in Isabelle/HOL!

Substituting - $\boldsymbol{\infty}$

lemma infinity_evalUni: shows " ($\exists \mathrm{y} . \forall \mathrm{x}<\mathrm{y} . \mathrm{aEvalUni}$ At x$)=$ (evalUni (substNegInfinityUni At) x)"

The intuition: VS for $-\infty$ should be equivalent to sampling from in the leftmost interval on the number line

Substituting - ∞

lemma infinity_evalUni: shows " ($\exists \mathrm{y} . \forall \mathrm{x}<\mathrm{y}$. aEvalUni At x$)=$ (evalUni (substNegInfinityUni At) x)"

Checks whether $a x^{\wedge} 2+b x+c$ satisfies the sign condition specified by At

At is a triple of real numbers (a, b, c) and a sign condition: <, =, s, or \neq

Substituting - ∞

lemma infinity_evalUni: shows " $(\exists y . \forall x<y$. aEvalUni At x $)=$ (evalUni (substNegInfinityUni At) x)"

Decide: Is there some sufficiently negative y so that, for all $x<y, a x^{\wedge} 2+b x+c$ satisfies the sign condition specified by At?

Substituting - ∞

lemma infinity_evalUni: shows " $(\exists y . \forall x<y . a E v a l U n i ~ A t ~ x)=$ (evalUni (substNegInfinityUni At) x)"

Evaluate a formula at a point

Given $A t$, virtually substitute $-\infty$

Decide: Is there some sufficiently negative y so that, for all $x<y, a x^{\wedge} 2+b x+c$ satisfies the sign condition specified by At?

Substituting - ∞

lemma infinity_evalUni: shows "($\exists \mathrm{y} . \forall \mathrm{x}<\mathrm{y}$. aEvalUni At x$)=$ (evalUni (substNegInfinityUni At) x)"

Evaluate a formula at a point

Given $A t$, virtually substitute $-\infty$

Decide: Is there some sufficiently negative y so that $a x^{\wedge} 2+b x+c$ satisfies the sign condition specified by At?

The intuition: VS for $-\infty$ should be equivalent to sampling from in the leftmost interval on the number line

Substituting - $\boldsymbol{\infty}$

lemma infinity_evalUni: shows " ($\exists \mathrm{y} . \forall \mathrm{x}<\mathrm{y} . \mathrm{aEvalUni}$ At x$)=$ (evalUni (substNegInfinityUni At) x)"

Why is this substitution lemma only stated for univariate polynomials?

Substituting - ∞

lemma infinity_evalUni: shows " ($\exists \mathrm{y} . \forall \mathrm{x}<\mathrm{y}$. aEvalUni At x$)=$ (evalUni (substNegInfinityUni At) x)"

Why is this substitution lemma only stated for univariate polynomials?

A clever trick: The multivariate VS proof proceeds by valuation. So we can state most of our correctness lemmas for univariate polynomials. Then later, naturally extend them to multivariate.

Substituting ε

lemma infinitesimal_quad: fixes A B C D: "real" This is stated for a quadratic polynomial, assumes " $D \neq 0$ " with $\operatorname{root}\left(A+B^{*} \operatorname{sqrt}(C)\right) / D$ assumes " $C \geq 0$ " shows " $(\exists \mathrm{y}:$: real> $((A+B * \operatorname{sqrt}(C)) /(D))$.
$\forall x:$:real $\in\{((A+B * \operatorname{sqrt}(C)) /(D))<. . y\}$. aEvalUni At $x)$
= (evalUni (substInfinitesimalQuadraticUni A B C D At) x

Substituting ε

lemma infinitesimal_quad: fixes $A B C D:$ "real"

This is stated for a quadratic polynomial, assumes " $D \neq 0$ " with $\operatorname{root}\left(A+B^{*} \operatorname{sqrt}(C)\right) / D$ assumes " $C \geq 0$ " shows " $(\exists \mathrm{y}:$: real> $((A+B * \operatorname{sqrt}(C)) /(D))$.
$\forall x:$:real $\in\{((A+B * \operatorname{sqrt}(C)) /(D))<. . y\}$. aEvalUni At $x)$
= (evalUni (substInfinitesimalQuadraticUni A B C D At) x

VS of ($A+B^{*}$ sqrt(C)/D) $+\varepsilon$ is equivalent to sampling from the interval directly "above" ($\mathrm{A}+\mathrm{B}^{*}$ sqrt(C)/D)

Formalizing VS: Related Work

- We formalize both Equality VS and General VS
- Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic equality VS)
- Nipkow's work is more theoretically oriented
- Chaeib's formalization is not publicly available; we chose not to build on it

Formalizing VS: Related Work

- We formalize both Equality VS and General VS
- Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic equality VS)
- Nipkow's work is more theoretically oriented
- Chaeib's formalization is not publicly available; we chose not to build on it

Different goals: We want practical verified real QE

Code Export and Experiments

Formalizing VS

- We export our code to SML for experimentation
- 378 benchmarks from the literature
- Compare to Mathematica, Z3, Redlog, SMT-RAT

Some Experimental Results

Some Experimental Results

We find longstanding errors in existing tools with a consistency comparison:

Z3: 73

Blue: only one solved
R:

LEG: us!

Green: consistent

Some Experimental Results

We find longstanding errors in existing tools with a consistency comparison:

Our experiments demonstrate how subtle real arithmetic is and highlight the role for formal verification.

Z3:
2

LEG: us!

Our Approach: Verifying BKR/Renegar

Yong Kiam Tan
André Platzer

Related Work

$$
\begin{aligned}
\text { Y } & =Y E S \\
X & =\text { NO } \\
& =\text { IN BETWEEN }
\end{aligned}
$$

	Efficient?	Verified?	Multivariate case builds directly on univariate?
Cohen-Hörmander			
Tarski			
CAD			
BKR \& Renegar Potential sweet spot!			

We formally verify* the univariate cases of BKR and Renegar in Isabelle/HOL.

K. Cordwell, Y. K. Tan, and A. Platzer. A Verified Decision Procedure for Univariate Real Arithmetic with the BKR Algorithm. Interactive Theorem Proving (ITP) 2021.
*Available on the Archive of Formal Proofs at: https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html

High-level Context

- ~7000 LOC
- Algorithm: ~110 LOC
- Matrix library extensions: ~1800 LOC

High-level Context

- ~7000 LOC
- Algorithm: ~110 LOC
- Matrix library extensions: ~1800 LOC

- Why Isabelle/HOL?
- Well-suited to formalizing mathematics
- Strong math libraries
- Sledgehammer

Univariate BKR: Bird's Eye View

- Transform the problem:

1. Decision problems to sign determination
2. Sign determination to restricted sign determination
3. To solve restricted sign determination, set up a matrix equation.

Step 1: Decision to Sign Determination

- Solve decision problems by finding the consistent sign assignments (CSAs) for a set of polynomials (sign determination)

```
Definition (sign assignment for {\mp@subsup{g}{1}{},\ldots,\mp@subsup{g}{n}{}}). A mapping \sigma: {\mp@subsup{g}{1}{},\ldots,\mp@subsup{g}{n}{}}->{+,-,0} \(\sigma\) is consistent if there is a real \(x\) where, for all \(i\), the sign of \(g_{i}(x)\) matches \(\sigma\left(g_{i}\right)\).
```


Step 1: Decision to Sign Determination

- Solve decision problems by finding the consistent sign assignments (CSAs) for a set of polynomials (sign determination)

CSA (+, -) indicates the existence of a point k with $\left(k^{2}+1 \geq 0 \wedge 3 k<0\right)$

Correctness Results for Step 1

theorem decision_procedure:

Canonical semantics for formulas
Our algorithms (defines what it means for a formula to hold at x in the standard way)

Step 2: Restricted Sign Determination

- Restrict sign determination to finding all CSAs for a set of univariate polynomials $\left\{q_{1}, \ldots, q_{n}\right\}$ at the roots of an auxiliary nonzero polynomial p

Step 2: Restricted Sign Determination

- Restrict sign determination to finding all CSAs for a set of univariate polynomials $\left\{q_{1}, \ldots, q_{n}\right\}$ at the roots of an auxiliary nonzero polynomial p

Correctness Results for Step 2

definition roots :: "real poly \Rightarrow real set" where "roots $p=\{x$. poly $p x=0\} "$

```
definition consistent_signs_at_roots :: "real poly # real poly list m rat list set"
```

where "consistent_signs_at_roots p qs = (sgn_vec qs) ' (roots p)"

Plug in the roots to the q_i's, take the resulting signs

Solve for the roots of a polynomial

Correctness Results for Step 2

```
definition roots :: "real poly }=>\mathrm{ real set" where "roots p = {x. poly p x = 0}"
definition consistent_signs_at_roots :: "real poly }=>\mathrm{ real poly list }=>\mathrm{ r rat list set"
where "consistent_signs_at_roots p qs = (sgn_vec qs) ' (roots p)"
theorem find_consistent_signs_at_roots:
assumes "p =0"
assumes "\bigwedgeq. q \in set qs \Longrightarrow coprime p q"
shows "set (find_consistent_signs_at_roots p qs) = consistent_signs_at_roots p qs"
```

our (constructive) algorithm

Step 3: The Matrix Equation

- Stores all relevant information for sign determination
- Idea dates back to Tarski; similarities to Cohen and Mahboubi's formalization*
- But BKR does it efficiently
*Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Log. Methods Comput. Sci., 8(1), 2012. doi:10.2168/ LMCS-8(1:2)2012.

Alfred Tarski

Step 3: The Matrix Equation

Find sign assignments to q_{1}, \ldots, q_{n} at the roots of p

Tarski

TQ stands for "Tarski query", refers to invoking the (computational)
Sturm-Tarski theorem

Step 3: The Matrix Equation

Find sign assignments to q_{1}, \ldots, q_{n} at the roots of p BKR builds its matrix equation (ME) inductively

Step 3: The Matrix Equation

After each combination, remove all inconsistent sign assignments (reduction step)

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

Signs: ++, + - , - +, --
Signs: ++, + - , - +

Reflections on Formalizing the Matrix Equation

- Inductive construction, inductive proof!
- It took some work to identify the right inductive invariant
- The reduction step poses the biggest challenge
- The reduction step requires extra proofs

Reflections on Formalizing the Matrix Equation

- Isabelle/HOL has well-developed libraries
- The Sturm-Tarski theorem is already formalized* (the key computational tool for the matrix equation)
- A number of linear algebra libraries are available

Extending the Matrix Libraries

- We build on a matrix library by Thiemann and Yamada*
- Our additions (~1800 LOC):
- A computational notion of the Kronecker product
- An algorithm to extract a basis from the rows of a matrix

■ Involved proving that row rank equals column rank

Code Export and Experiments

Experiments with SML code

- We export our formally verified algorithm to SML for experimentation
- Compare to:
- A naive (unverified) version of Tarski's algorithm
- Li, Passmore, and Paulson*

Experiments with SML code

- We export our formally verified algorithm to SML for experimentation
- Compare to:
- A naive (unverified) version of Tarski's algorithm
- Li, Passmore, and Paulson*
- Li et. al is faster:
- CAD is generally faster than BKR
- Their procedure is highly optimized
- They use Mathematica as an untrusted oracle

Experiments with SML code

*Compiled with mlton

*Run on a laptop
*Dashes indicate timeout
*Times in seconds

Formula	\#Poly	\# $\boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $($ Naive $)$	\# $\boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $(\mathbf{B K R})$	Time (Naive)	Time $(\mathbf{B K R})$	Time $([18])$
ex1	$4(12)$	20	31	0.003	0.006	3.020
ex2	$5(6)$	576	180	5.780	0.442	3.407
ex3	$4(22)$	112	120	1794.843	1865.313	3.580
ex4	$5(3)$	112	95	0.461	0.261	3.828
3s startup time for						
ex5	$8(3)$	576	219	28.608	8.333	3.806
ex6	$22(9)$	50331648	-	-	-	6.187
ex7	$10(12)$	6144	-	-	-	-
ex1 $\wedge 2$	$9(12)$	2816	298	317.432	3.027	3.033
ex1 $\wedge 2 \wedge 4$	$13(12)$	28672	555	-	51.347	3.848
ex1 $\wedge 2 \wedge 5$	$16(12)$	131072	826	-	436.575	3.711

Experiments with SML code

*Compiled with mlton

*Run on a laptop
*Dashes indicate timeout
*Times in seconds

Formula	\#Poly	$\# \boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $(\mathbf{N a i v e})$	\# $\boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $(\mathbf{B K R})$	Time $(\mathbf{N a i v e)}$	Time $(\mathbf{B K R})$	Time $([18])$
ex1	$4(12)$	20	31	0.003	0.006	3.020
ex2	$5(6)$	576	180	5.780	0.442	3.407
ex3	$4(22)$	112	120	1794.843	1865.313	3.580
ex4	$5(3)$	112	95	0.461	0.261	3.828
ex5	$8(3)$	576	219	28.608	8.333	3.806
ex6	$22(9)$	50331648	-	-	-	6.187
ex7	$10(12)$	6144	-	-	-	-
ex1 $\wedge 2$	$9(12)$	2816	298	317.432	3.027	3.033
ex1 $\wedge 2 \wedge 4$	$13(12)$	28672	555	-	51.347	3.848
ex1 $\wedge 2 \wedge 5$	$16(12)$	131072	826	-	436.575	3.711

Experiments with SML code

*Compiled with mlton

*Run on a laptop
*Dashes indicate timeout
*Times in seconds

Formula	\#Poly	$\# \boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $(\mathbf{N a i v e})$	$\boldsymbol{N} \boldsymbol{N}(\boldsymbol{p}, \boldsymbol{q})$ $(\mathbf{B K R})$	Time (Naive)	Time $(\mathbf{B K R})$	Time $([18])$
ex1	$4(12)$	20	31	0.003	0.006	3.020
ex2	$5(6)$	576	180	5.780	0.442	3.407
ex3	$4(22)$	112	120	1794.843	1865.313	3.580
ex4	$5(3)$	112	95	0.461	0.261	3.828
ex5	$8(3)$	576	219	28.608	8.333	3.806
ex6	$22(9)$	50331648	-	-	-	6.187
ex7	$10(12)$	6144	-	-	-	-
ex1 $\wedge 2$	$9(12)$	2816	298	317.432	3.027	3.033
ex1 $\wedge 2 \wedge 4$	$13(12)$	28672	555	-	51.347	3.848
ex1 $\wedge 2 \wedge 5$	$16(12)$	131072	826	-	436.575	3.711

Putting it all together: Future directions

Future Directions

BKR

- Optimize univariate BKR
- Formally verified complexity analysis (ambitious!)
- Formalizing multivariate BKR

VS

- Continue to optimize
- Add support for division
- Extend to higher-degree?

Future Directions

BKR VS

- Optimize univariate BKR
- Formally verified complexity analysis (ambitious!)
- Formalizing multivariate BKR
- Continue to optimize
- Add support for division
- Extend to higher-degree?

Conclusion

- We have formally verified the univariate case of BKR's QE algorithm
- BKR hits a potential sweet spot in between practicality and ease of verification
- We have formally verified linear and quadratic VS, a highly effective (but limited) QE method
- Our experiments demonstrate the role of verification for QE

Conclusion

- We have formally verified the univariate case of BKR's QE algorithm
- BKR hits a potential sweet spot in between practicality and ease of verification
- We have formally verified linear and quadratic VS, a highly effective (but limited) QE method
- Our experiments demonstrate the role of verification for QE

E Questions?

