
Towards Practical Provably Correct
Algorithms for Real Quantifier Elimination

This material in this talk is based upon work supported by the NSF under Grant No. CNS-1739629, the NSF Graduate
Research Fellowship Program under Grants Nos. DGE1252522 and DGE1745016, by A*STAR Singapore, and by the AFOSR
under grant number FA9550-16-1-0288. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the NSF, AFOSR, or A*STAR Singapore.

Katherine Cordwell

Carnegie Mellon University

1

Problem

● Real arithmetic questions involving the ∃ (exists) and ∀ (for all)

quantifiers (ranging over the reals) are difficult for computers

● Quantifier elimination (QE): The process of transforming a quantified

statement into a logically equivalent quantifier-free statement

2

*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and
Semidefinite Optimization”). Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

Examples

3

QE is identifying exactly what
conditions on a will make the
original formula true!

A Miraculous Result

● Algorithms for QE exist (Tarski, 1930)

● Algorithms for QE are complicated

Alfred Tarski

4

● Formulas: Conjunctions and disjunctions of polynomial inequalities and

equations (with rational coefficients)

● If a formula in a QE problem involves only one variable, we call it a

univariate QE problem. Else it is a multivariate QE problem

● Decision problems are problems where all variables are quantified

Terminology

5

*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and
Semidefinite Optimization”). Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

A univariate decision problem A multivariate QE question
Not a decision problem

Examples, Revisited

6

● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

For more information, see:
Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and
Satisfiability and Their Applications. Math.Comput.Sci. 11, 483–502 (2017).

Motivation

7

Motivation

● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

● Two conclusions

○ We want to know how to do QE

○ We want to be sure that we know how to do QE correctly

8

9

Doing QE correctly

● Formally verified QE algorithms

○ Implemented in theorem provers

○ Have proofs of correctness

○ Significantly more trustworthy than

unverified algorithms

10

Doing QE correctly

● Formally verified QE algorithms

○ Implemented in theorem provers

○ Have proofs of correctness

○ Significantly more trustworthy than

unverified algorithms

There are QE algorithms (Tarski), we’ll just

verify them and be done…?

● Challenge: Verified QE is much more difficult than

unverified QE

● Problem: Dearth of efficient verified QE support

○ CPS theorem prover KeYmaera X outsources

QE to unverified software

○ This can introduce bugs

11

Doing QE correctly

= YES

= NO
= IN BETWEEN

Related Work

12

Our Approach

13

Twofold Approach

● Verify the Ben-Or, Kozen, and Reif (BKR) decision procedure (and its

extension to a full QE algorithm by Renegar), which fits in a sweet spot
in between practicality and ease of formalization

● Verify virtual substitution (VS), an extremely efficient QE algorithm

that works on a fragment of QE problems

14

Our Approach: Verifying Virtual
Substitution (VS)

15

André PlatzerStefan MitschMatias Scharager

M. Scharager, K. Cordwell, S. Mitsch, and A. Platzer. Verified Quadratic Virtual
Substitution for Real Arithmetic. Accepted to Formal Methods (FM) 2021, to appear.

Fabian Immler

16

What is Virtual Substitution?

● A highly efficient QE method that works on a fragment of QE problems

● Targets problems with low-degree polynomials (linear or quadratic)

● Two flavors: Equality VS and General VS

17

Equality Virtual Substitution

● Works when a formula has a linear or quadratic equation:

● Can we directly substitute into F?

∃x. (ax2 + bx + c = 0 ⋀ F)

18

Equality Virtual Substitution

● Works when a formula has a linear or quadratic equation:

● Can we directly substitute into F?

 Not without leaving the first-order logic of real arithmetic (FOL
R

)

Instead: “virtually” substitute

∃x. (ax2 + bx + c = 0 ⋀ F)

19

Equality Virtual Substitution

● Example: ∃x. (x > 0 ⋀ x2 = 2 ⋀ xy = 1)

● We’d like to virtually substitute x = into xy = 1

20

Equality Virtual Substitution

● Example: ∃x. (x > 0 ⋀ x2 = 2 ⋀ xy = 1)

● We’d like to virtually substitute x = into xy = 1

● An appropriate FOL
R

 formula: y > 0 ⋀ y2 = 1/2

Key Takeaways

21

● VS “simulates” direct substitution in that it captures
all of the logical meaning in direct substitution, but
maintains formulas in FOL_R

● The presence of low-degree equalities automatically
gives us a finite number of points to virtually substitute

22

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

23

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

24

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

21 3

25

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

21 3

In every interval between the roots, the
polynomials have constant sign

26

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

In every interval between the roots, the
polynomials have constant sign

(

(

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

27

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

(

(

p q

p2 - 4 and q2 - 4 have the same sign
p2 - 4p + 3 and q2 - 4q + 3 have the same sign

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

28

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

(

(

p

ANY point from this interval captures information for the entire interval!
This allows us to discretize with sample points

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

29

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Here are the sample points VS will pick (in red)

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε

30

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Why -∞ and the ε’s? Why not -3, 0, 1.5, 2.5, and 4?

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε

31

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Why -∞ and the ε’s? Why not -3, 0, 1, 1.5, 2.5, 3, and 4?
VS needs to be able to generalize to arbitrary examples; can’t overfit
for the current example

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε

32

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

r
1

-∞ r
1
+ε

∃x. (ax2 + bx + c > 0 ⋀ x2 - 4x + 3 < 0)

r
2

1 3

1+ε r
2
+ε 3+ε

33

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

r
1

-∞ r
1
+ε

∃x. (ax2 + bx + c > 0 ⋀ x2 - 4x + 3 < 0)

r
2

1 3

r
2
+ε 3+ε1+ε

34

General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Note: We can only use general VS when we know all of the roots of the
polynomials in our formula: i.e. when all of the polynomials are linear
or quadratic in the variable of interest.

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

Formalizing this in Isabelle/HOL!

36

Substituting -∞

The intuition: VS for -∞ should be equivalent to sampling
from in the leftmost interval on the number line

-∞

37

Checks whether ax^2 + bx + c

satisfies the sign condition

specified by At

At is a triple of real

numbers (a, b, c) and

a sign condition: <, =,

≤, or ≠

Substituting -∞

38

Decide: Is there some sufficiently negative y
so that, for all x < y, ax^2 + bx + c satisfies
the sign condition specified by At?

Substituting -∞

39

Evaluate a formula at a point

Substituting -∞

Decide: Is there some sufficiently negative y
so that, for all x < y, ax^2 + bx + c satisfies
the sign condition specified by At?Given At, virtually substitute -∞

40

Given At, virtually substitute -∞

Decide: Is there some sufficiently
negative y so that ax^2 + bx + c satisfies
the sign condition specified by At?

Substituting -∞

The intuition: VS for -∞ should be equivalent to sampling
from in the leftmost interval on the number line

-∞

Evaluate a formula at a point

41

Substituting -∞

Why is this substitution lemma only stated for univariate polynomials?

42

Substituting -∞

Why is this substitution lemma only stated for univariate polynomials?

A clever trick: The multivariate VS proof proceeds by valuation. So we can state
most of our correctness lemmas for univariate polynomials. Then later, naturally
extend them to multivariate.

43

Substituting ε

This is stated for a quadratic polynomial,
with a root (A + B*sqrt(C))/D

44

Substituting ε

This is stated for a quadratic polynomial,
with a root (A + B*sqrt(C))/D

VS of (A + B*sqrt(C)/D) + ε is equivalent to sampling from the interval
directly “above” (A + B*sqrt(C)/D)

45

Formalizing VS: Related Work

● We formalize both Equality VS and General VS

● Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic

equality VS)

○ Nipkow’s work is more theoretically oriented

○ Chaeib’s formalization is not publicly available; we chose not to

build on it

46

Formalizing VS: Related Work

● We formalize both Equality VS and General VS

● Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic

equality VS)

○ Nipkow’s work is more theoretically oriented

○ Chaeib’s formalization is not publicly available; we chose not to

build on it

Different goals: We want practical verified real QE

Code Export and Experiments

47

48

Formalizing VS

● We export our code to SML for experimentation

○ 378 benchmarks from the literature

○ Compare to Mathematica, Z3, Redlog, SMT-RAT

49

Some Experimental Results

50

Some Experimental Results

We find longstanding errors in existing tools with a consistency comparison:

Green: consistent Blue: only one solved Red: inconsistent

W: Z3: S: R: LEG: us!

51

Our experiments demonstrate how
subtle real arithmetic is and highlight
the role for formal verification.

Our Approach: Verifying
BKR/Renegar

52

André PlatzerYong Kiam Tan

= YES

= NO
= IN BETWEEN

Related Work

53

We formally verify* the
univariate cases of BKR and
Renegar in Isabelle/HOL.

*Available on the Archive of Formal Proofs at: https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
54

K. Cordwell, Y. K. Tan, and A. Platzer. A Verified Decision Procedure for Univariate Real
Arithmetic with the BKR Algorithm. Interactive Theorem Proving (ITP) 2021.

High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC

55

High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC

● Why Isabelle/HOL?

○ Well-suited to formalizing mathematics

○ Strong math libraries

○ Sledgehammer

56

The main
formalization
challenge

Univariate BKR: Bird’s Eye View

● Transform the problem:

1. Decision problems to sign determination

2. Sign determination to restricted sign determination

3. To solve restricted sign determination, set up a matrix equation.

57

Definition (sign assignment for {g1, …, gn}). A mapping σ: {g1, …, gn} → {+, -, 0}
σ is consistent if there is a real x where, for all i, the sign of gi(x) matches σ(gi).

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments
(CSAs) for a set of polynomials (sign determination)

58

Decision Problem:
∃x. (x2+1 ≥ 0 ∧ 3x <
0)

Find all consistent sign
assignments for x2 + 1 and 3x

CSAs: (+, -), (+, 0), (+, +)
CSA (+, -) indicates the
existence of a point k
with (k2+1 ≥ 0 ∧ 3k < 0)

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments
(CSAs) for a set of polynomials (sign determination)

59

Our algorithmsCanonical semantics for formulas
(defines what it means for a formula
to hold at x in the standard way)

Correctness Results for Step 1

60

Technical detail: BKR

imposes some conditions on

{q
1

, . . ., q
n
}, p

Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of univariate

polynomials {q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p

61

Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of univariate

polynomials {q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p

62

Solve for the roots of a
polynomial

Plug in the roots to the q_i’s,
take the resulting signs

Correctness Results for Step 2

63

Correctness Results for Step 2

64

the nonconstructive definitionour (constructive) algorithm

Alfred Tarski

*Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic
geometry: from ordered fields to quantifier elimination. Log. Methods
Comput. Sci., 8(1), 2012. doi:10.2168/ LMCS-8(1:2)2012.

Step 3: The Matrix Equation

● Stores all relevant information for sign determination

● Idea dates back to Tarski; similarities to Cohen and Mahboubi’s

formalization*

● But BKR does it efficiently

65

Tarski

Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

=
of (+ ,…, +,+)
of (+ ,..., +, -)

of (- ,..., -, -)

M-1
*

TQ subset 1
TQ subset 2

TQ subset 2n

Invertible matrix
Size 2n x 2n

Can be computed

TQ stands for “Tarski
query”, refers to invoking
the (computational)
Sturm-Tarski theorem

66

...

...

Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

BKR builds its matrix equation (ME) inductively

67

ME for q
1

ME for q
2

ME for q
n

. . . ME for q
n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1

,..., q
n

REDUCE REDUCE

REDUCE

. . .

68

ME for q
1

ME for q
2

ME for q
n

. . . ME for q
n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1

,..., q
n

REDUCE REDUCE

REDUCE
. . .

69

ME for q
1

ME for q
2

ME for q
n. . . ME for q

n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1

,..., q
n

REDUCE REDUCE

REDUCE

. . .

Step 3: The Matrix Equation

Signs: ++, + - , - +, -- Signs: ++, + - , - +

70

After each combination, remove all inconsistent sign assignments
(reduction step)

*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https:
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Inductive construction, inductive proof!

○ It took some work to identify the right inductive invariant

○ The reduction step poses the biggest challenge

● The reduction step requires extra proofs

71

*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https:
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Isabelle/HOL has well-developed libraries

○ The Sturm-Tarski theorem is already formalized* (the key

computational tool for the matrix equation)

○ A number of linear algebra libraries are available

72

*Rene Theimann and Akihisa Yamada. Matrices, Jordan normal forms, and spectral radius theory. Archive of Formal Proofs, August 2015.

Extending the Matrix Libraries

● We build on a matrix library by Thiemann and Yamada*

● Our additions (~1800 LOC):

○ A computational notion of the Kronecker product

○ An algorithm to extract a basis from the rows of a matrix

■ Involved proving that row rank equals column rank

73

Code Export and Experiments

74

*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*

75

*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*

● Li et. al is faster:

○ CAD is generally faster than BKR

○ Their procedure is highly optimized

○ They use Mathematica as an untrusted oracle

76

*Compiled with mlton

*Run on a laptop

*Dashes indicate timeout

*Times in seconds

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

Benchmarks
from [18]

77

3s startup time for
Mathematica

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton

*Run on a laptop

*Dashes indicate timeout

*Times in seconds

78

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton

*Run on a laptop

*Dashes indicate timeout

*Times in seconds

79

Putting it all together: Future
directions

80

81

VS

● Continue to optimize

● Add support for division

● Extend to higher-degree?

Future Directions

BKR

● Optimize univariate BKR

● Formally verified complexity

analysis (ambitious!)

● Formalizing multivariate BKR

82

Towards a practical verified QE method: link together BKR, VS

Future Directions

BKR

● Optimize univariate BKR

● Formally verified complexity

analysis (ambitious!)

● Formalizing multivariate BKR

VS

● Continue to optimize

● Add support for division

● Extend to higher-degree?

Conclusion

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease
of verification

● We have formally verified linear and quadratic VS, a highly effective
(but limited) QE method
○ Our experiments demonstrate the role of verification for QE

83

Conclusion

84

∃ Questions?

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease
of verification

● We have formally verified linear and quadratic VS, a highly effective
(but limited) QE method
○ Our experiments demonstrate the role of verification for QE

