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Problem

● Real arithmetic questions involving the ∃ (exists) and ∀ (for all) 

quantifiers (ranging over the reals) are difficult for computers

● Quantifier elimination (QE): The process of transforming a quantified 

statement into a logically equivalent quantifier-free statement
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*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and 
Semidefinite Optimization”).  Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

Examples
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QE is identifying exactly what 
conditions on a will make the 
original formula true!



A Miraculous Result

● Algorithms for QE exist (Tarski, 1930)

● Algorithms for QE are complicated

Alfred Tarski

4



● Formulas: Conjunctions and disjunctions of polynomial inequalities and 

equations (with rational coefficients)

● If a formula in a QE problem involves only one variable, we call it a 

univariate QE problem.  Else it is a multivariate QE problem

● Decision problems are problems where all variables are quantified

Terminology
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*This example is taken from some of Pablo Parrilo’s lecture notes (Lecture 18 of his 2006 course, “Algebraic Techniques and 
Semidefinite Optimization”).  Accessible through his webpage: https://www.mit.edu/~parrilo/index.html

Example*

QE

Example

∀x. x2 + 1 > 0

True

QE

A univariate decision problem A multivariate QE question
Not a decision problem

Examples, Revisited
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● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

For more information, see:
Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and 
Satisfiability and Their Applications. Math.Comput.Sci. 11, 483–502 (2017).

Motivation
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Motivation

● Quantified statements arise in a number of applications

○ Geometry proofs

○ Stability analysis

○ Verification of cyber-physical systems (like robots!)

● Two conclusions 

○ We want to know how to do QE

○ We want to be sure that we know how to do QE correctly 
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Doing QE correctly

● Formally verified QE algorithms

○ Implemented in theorem provers

○ Have proofs of correctness

○ Significantly more trustworthy than 

unverified algorithms
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Doing QE correctly

● Formally verified QE algorithms

○ Implemented in theorem provers

○ Have proofs of correctness

○ Significantly more trustworthy than 

unverified algorithms

There are QE algorithms (Tarski), we’ll just 

verify them and be done…?



● Challenge: Verified QE is much more difficult than 

unverified QE

● Problem: Dearth of efficient verified QE support

○ CPS theorem prover KeYmaera X outsources 

QE to unverified software

○ This can introduce bugs 
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Doing QE correctly



= YES

= NO
= IN BETWEEN 

Related Work
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Our Approach
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Twofold Approach

● Verify the Ben-Or, Kozen, and Reif (BKR) decision procedure (and its 

extension to a full QE algorithm by Renegar),  which fits in a sweet spot 
in between practicality and ease of formalization

● Verify virtual substitution (VS), an extremely efficient QE algorithm 

that works on a fragment of QE problems
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Our Approach: Verifying Virtual 
Substitution (VS)

15

André PlatzerStefan MitschMatias Scharager

M. Scharager, K. Cordwell, S. Mitsch, and A. Platzer. Verified Quadratic Virtual 
Substitution for Real Arithmetic. Accepted to Formal Methods (FM) 2021, to appear.

Fabian Immler
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What is Virtual Substitution?

● A highly efficient QE method that works on a fragment of QE problems

● Targets problems with low-degree polynomials (linear or quadratic)

● Two flavors: Equality VS and General VS
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Equality Virtual Substitution

● Works when a formula has a linear or quadratic equation:

● Can we directly substitute                                                    into F?

∃x. (ax2 + bx + c = 0 ⋀ F)
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Equality Virtual Substitution

● Works when a formula has a linear or quadratic equation:

● Can we directly substitute                                                    into F?

 Not without leaving the first-order logic of real arithmetic (FOL
R

)

Instead: “virtually” substitute       

∃x. (ax2 + bx + c = 0 ⋀ F)
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Equality Virtual Substitution

● Example: ∃x. (x > 0 ⋀ x2 = 2 ⋀ xy = 1)

● We’d like to virtually substitute x =           into xy = 1
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Equality Virtual Substitution

● Example: ∃x. (x > 0 ⋀ x2 = 2 ⋀ xy = 1)

● We’d like to virtually substitute x =           into xy = 1

● An appropriate FOL
R

 formula: y > 0 ⋀ y2 = 1/2



Key Takeaways
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● VS “simulates” direct substitution in that it captures 
all of the logical meaning in direct substitution, but 
maintains formulas in FOL_R

● The presence of low-degree equalities automatically 
gives us a finite number of points to virtually substitute
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

21 3
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

21 3

In every interval between the roots, the 
polynomials have constant sign
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

In every interval between the roots, the 
polynomials have constant sign

(

(

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

(

(

p q

p2 - 4 and q2 - 4 have the same sign
p2 - 4p + 3 and q2 - 4q + 3 have the same sign

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

-2 21 3

(

(

p

ANY point from this interval captures information for the entire interval!
This allows us to discretize with sample points

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Here are the sample points VS will pick (in red)

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Why -∞ and the ε’s?  Why not -3, 0, 1.5, 2.5, and 4?

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Why -∞ and the ε’s?  Why not -3, 0, 1, 1.5, 2.5, 3, and 4?
VS needs to be able to generalize to arbitrary examples; can’t overfit 
for the current example

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

r
1

-∞ r
1
+ε

∃x. (ax2 + bx + c > 0 ⋀ x2 - 4x + 3 < 0)

r
2

1 3

1+ε r
2
+ε 3+ε
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

r
1

-∞ r
1
+ε

∃x. (ax2 + bx + c > 0 ⋀ x2 - 4x + 3 < 0)

r
2

1 3

r
2
+ε 3+ε1+ε
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General Virtual Substitution

● General VS allows for the presence of inequalities

● ...but then what points do we substitute?

Note: We can only use general VS when we know all of the roots of the 
polynomials in our formula: i.e. when all of the polynomials are linear 
or quadratic in the variable of interest.

-2

-∞

21 3

1+ε 2+ε 3+ε-2+ε

∃x. (x2 - 4 > 0 ⋀ x2 - 4x + 3 < 0)



Formalizing this in Isabelle/HOL!
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Substituting -∞

The intuition: VS for -∞ should be equivalent to sampling 
from in the leftmost interval on the number line

-∞
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Checks whether ax^2 + bx + c 

satisfies the sign condition 

specified by At

At is a triple of real 

numbers (a, b, c) and 

a sign condition: <, =, 

≤, or ≠

Substituting -∞
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Decide: Is there some sufficiently negative y 
so that, for all x < y, ax^2 + bx + c satisfies 
the sign condition specified by At?

Substituting -∞
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Evaluate a formula at a point

Substituting -∞

Decide: Is there some sufficiently negative y 
so that, for all x < y, ax^2 + bx + c satisfies 
the sign condition specified by At?Given At, virtually substitute -∞
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Given At, virtually substitute -∞

Decide: Is there some sufficiently 
negative y so that ax^2 + bx + c satisfies 
the sign condition specified by At?

Substituting -∞

The intuition: VS for -∞ should be equivalent to sampling 
from in the leftmost interval on the number line

-∞

Evaluate a formula at a point
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Substituting -∞

Why is this substitution lemma only stated for univariate polynomials? 
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Substituting -∞

Why is this substitution lemma only stated for univariate polynomials? 

A clever trick: The multivariate VS proof proceeds by valuation.  So we can state 
most of our correctness lemmas for univariate polynomials.  Then later, naturally 
extend them to multivariate.
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Substituting ε

This is stated for a quadratic polynomial, 
with a root (A + B*sqrt(C))/D
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Substituting ε

This is stated for a quadratic polynomial, 
with a root (A + B*sqrt(C))/D

VS of (A + B*sqrt(C)/D) + ε is equivalent to sampling from the interval 
directly “above” (A + B*sqrt(C)/D) 
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Formalizing VS: Related Work

● We formalize both Equality VS and General VS

● Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic 

equality VS)

○ Nipkow’s work is more theoretically oriented

○ Chaeib’s formalization is not publicly available; we chose not to 

build on it
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Formalizing VS: Related Work

● We formalize both Equality VS and General VS

● Related work: Tobias Nipkow (linear VS), Amine Chaeib (quadratic 

equality VS)

○ Nipkow’s work is more theoretically oriented

○ Chaeib’s formalization is not publicly available; we chose not to 

build on it

Different goals: We want practical verified real QE



Code Export and Experiments
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Formalizing VS

● We export our code to SML for experimentation

○ 378 benchmarks from the literature

○ Compare to Mathematica, Z3, Redlog, SMT-RAT
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Some Experimental Results
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Some Experimental Results

We find longstanding errors in existing tools with a consistency comparison:

Green: consistent Blue: only one solved Red: inconsistent

W:             Z3:             S:                 R:                LEG: us!
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Our experiments demonstrate how 
subtle real arithmetic is and highlight 
the role for formal verification.



Our Approach: Verifying 
BKR/Renegar
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André PlatzerYong Kiam Tan



= YES

= NO
= IN BETWEEN 

Related Work
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We formally verify* the 
univariate cases of BKR and 
Renegar in Isabelle/HOL.

*Available on the Archive of Formal Proofs at: https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
54

K. Cordwell, Y. K. Tan, and A. Platzer. A Verified Decision Procedure for Univariate Real 
Arithmetic with the BKR Algorithm. Interactive Theorem Proving (ITP) 2021.



High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC
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High-level Context

● ~7000 LOC

○ Algorithm: ~110 LOC

○ Matrix library extensions: ~1800 LOC

● Why Isabelle/HOL?

○ Well-suited to formalizing mathematics

○ Strong math libraries

○ Sledgehammer
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The main 
formalization 
challenge

Univariate BKR: Bird’s Eye View

● Transform the problem:

1. Decision problems to sign determination

2. Sign determination to restricted sign determination

3. To solve restricted sign determination, set up a matrix equation.
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Definition (sign assignment for {g1, …, gn}).  A mapping σ: {g1, …, gn} → {+, -, 0}
σ is consistent if there is a real x where, for all i, the sign of gi(x) matches σ(gi).

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments 
(CSAs) for a set of polynomials (sign determination)
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Decision Problem:
∃x. (x2+1 ≥ 0 ∧ 3x < 
0)

Find all consistent sign 
assignments for x2 + 1 and 3x

CSAs: (+, -), (+, 0), (+, +)
CSA (+, -) indicates the 
existence of a point k 
with (k2+1  ≥ 0 ∧ 3k < 0) 

Step 1: Decision to Sign Determination

● Solve decision problems by finding the consistent sign assignments 
(CSAs) for a set of polynomials (sign determination)
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Our algorithmsCanonical semantics for formulas 
(defines what it means for a formula 
to hold at x in the standard way)

Correctness Results for Step 1
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Technical detail: BKR 

imposes some conditions on 

{q
1

, . . ., q
n
}, p

Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of univariate 

polynomials {q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p
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Step 2: Restricted Sign Determination

● Restrict sign determination to finding all CSAs for a set of univariate 

polynomials {q
1

, . . ., q
n
} at the roots of an auxiliary nonzero polynomial p
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Solve for the roots of a 
polynomial

Plug in the roots to the q_i’s, 
take the resulting signs

Correctness Results for Step 2
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Correctness Results for Step 2
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the nonconstructive definitionour (constructive) algorithm



Alfred Tarski

*Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic 
geometry: from ordered fields to quantifier elimination. Log. Methods 
Comput. Sci., 8(1), 2012. doi:10.2168/ LMCS-8(1:2)2012.

Step 3: The Matrix Equation

● Stores all relevant information for sign determination

● Idea dates back to Tarski; similarities to Cohen and Mahboubi’s 

formalization*

● But BKR does it efficiently
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Tarski

Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

=
# of (+ ,…, +,+)
# of (+ ,..., +, -)

# of (- ,..., -, -)

M-1
*

TQ subset 1
TQ subset 2

TQ subset 2n

Invertible matrix
Size 2n x 2n 

Can be computed

TQ stands for “Tarski 
query”, refers to invoking 
the (computational) 
Sturm-Tarski theorem

66
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Step 3: The Matrix Equation

Find sign assignments to q
1

, ... , q
n
 at the roots of p

BKR builds its matrix equation (ME) inductively
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ME for q
1

ME for q
2

ME for q
n

. . . ME for q
n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1 

,..., q
n

REDUCE REDUCE

REDUCE

. . .
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ME for q
1

ME for q
2

ME for q
n

. . . ME for q
n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1 

,..., q
n

REDUCE REDUCE

REDUCE
. . .
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ME for q
1

ME for q
2

ME for q
n. . . ME for q

n-1

ME for q
1

, q
2

ME for q
n-1

, q
n

ME for q
1 

,..., q
n

REDUCE REDUCE

REDUCE

. . .



Step 3: The Matrix Equation

Signs: ++, + - , - +, -- Signs: ++, + - , - +

70

After each combination, remove all inconsistent sign assignments 
(reduction step)



*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https: 
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Inductive construction, inductive proof!

○ It took some work to identify the right inductive invariant 

○ The reduction step poses the biggest challenge 

● The reduction step requires extra proofs 
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*Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014. https: 
//isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

Reflections on Formalizing the Matrix Equation

● Isabelle/HOL has well-developed libraries

○ The Sturm-Tarski theorem is already formalized* (the key 

computational tool for the matrix equation)

○ A number of linear algebra libraries are available 
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*Rene Theimann and Akihisa Yamada. Matrices, Jordan normal forms, and spectral radius theory. Archive of Formal Proofs, August 2015.

Extending the Matrix Libraries

● We build on a matrix library by Thiemann and Yamada*

● Our additions (~1800 LOC):

○ A computational notion of the Kronecker product

○ An algorithm to extract a basis from the rows of a matrix

■ Involved proving that row rank equals column rank
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Code Export and Experiments
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*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using 
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*
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*Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using 
untrusted certificates in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

● We export our formally verified algorithm to SML for experimentation

● Compare to:

○ A naive (unverified) version of Tarski’s algorithm

○ Li, Passmore, and Paulson*

● Li et. al is faster:

○ CAD is generally faster than BKR

○ Their procedure is highly optimized

○ They use Mathematica as an untrusted oracle
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*Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds

[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code

Benchmarks 
from [18]

77

3s startup time for 
Mathematica



[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds
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[18] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate polynomial problems using untrusted certificates 
in Isabelle/HOL. J. Autom. Reason., 62(1):69–91, 2019.

Experiments with SML code *Compiled with mlton 

*Run on a laptop

*Dashes indicate timeout

*Times in seconds
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Putting it all together: Future 
directions
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VS

● Continue to optimize

● Add support for division

● Extend to higher-degree?

Future Directions

BKR

● Optimize univariate BKR

● Formally verified complexity 

analysis (ambitious!)

● Formalizing multivariate BKR
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Towards a practical verified QE method: link together BKR, VS

Future Directions

BKR

● Optimize univariate BKR

● Formally verified complexity 

analysis (ambitious!)

● Formalizing multivariate BKR

VS

● Continue to optimize

● Add support for division

● Extend to higher-degree?



Conclusion

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease 
of verification

● We have formally verified linear and quadratic VS, a highly effective 
(but limited) QE method
○ Our experiments demonstrate the role of verification for QE
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Conclusion
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∃ Questions?

● We have formally verified the univariate case of BKR’s QE algorithm

○ BKR hits a potential sweet spot in between practicality and ease 
of verification

● We have formally verified linear and quadratic VS, a highly effective 
(but limited) QE method
○ Our experiments demonstrate the role of verification for QE


